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I. INTRODUCTION 

A. General Comments 

Synthetic chemistry involving chelating ligands dates back to the 

late 1880s, when Jorgensen prepared the first transition-metal complexes 

12 3 of ethylenediamine. ' Several years later, Werner suggested the 

correct structure for cis-PtCl̂ (H„NCĤ CĤ NĤ ). Soon thereafter, Leŷ  

recognized that certain chelated complexes exhibited surprisingly lower 

reactivities than their parent aqueous ions. Work throughout the early 

20th century continued to underscore the marked stability of complexes 

of chelating ligands with respect to those of monodentate ligands. An 

important report by Spike and Parrŷ  in 1953 lent strong experimental 

evidence to the notion that this enhanced stability, or the so-called 

"chelate effect", was entropie rather than enthalpic in nature. In 

that work, it was shown that the displacement of two or more ligands by 

one chelating ligand took place with a large, positive entropy change. 

This entropy change arises from the fact that two particles react to 

give three; the total translational entropy in the latter case is suspected 

to be substantially higher.̂  The effect of a large AS as seen by the 

Gibbs-HelmhoItz equation, AG = AH-TAS, is to decrease AG greatly, 

assuming a relatively small AH. A more negative AG, of course, 

represents a larger equilibrium constant in favor of the chelated 

product. A rather recent investigation̂  into the thermodynamics of 

chelation supports the preceding classical view in essence, but 
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stresses that enthalpy changes for chelation reactions may.he larger than 

previously assumed and that In systems deviating from Ideality (that Is, 

at high concentrations and/or under conditions of extensive hydrogen 

bonding), the observed thermodynamic results are not always readily 

predictable. 

Manifestations of the chelate effect have held and continue to hold 

great Interest for the chemist, both in theory and practice. Optimization 

of geometric and donor properties of chelating ligands has led to the 

development of potent metal-ion binders and sequestering agents. One 

well-known example is ethylenediamlnetetraacetlc acid and similar compounds, 

which have found many uses in the household, industry, and the chemical 

laboratory. Clinical medicine also finds use for such chelating agents; 

8 9 
the recent development of the enterochellns by Raymond and coworkers ' 

holds promise in the treatment of iron and plutonium poisoning. Because 

of their abilities to alter chemistry at metal center, a number of 

chelating ligands have had important applications in organometalllc 

chemistry. In some cases, the ligand may serve only to alter the "natural" 

stereochemistry at a metal site with respect to monodentate ligands. 

In other cases, the chelate effect may stabilize a certain structural 

type which is unknown for rion-chelating ligands, as in Cr(diphos)g.̂  ̂

The introduction of chiral dlphosphine ligands into homogeneous catalysts 

has led to highly selective asymmetric synthesis of amino acids from 

12 prochiral substrates. In theory, a properly constructed ligand system 



www.manaraa.com

3 

might produce a hlgjhly destabilized metal center capable of carrying out 

an efficient catalytic reaction, in analogy to such "entatic states" in 

13 
biological systems. 

B, The Present Research 

Angelici, Quick, and Kraus reported the synthesis of two bidentate 

ligands containing the linear nitrile ("DiCN") and Isonitrile ("DINC") 

functional groups.These ligands were shown to undergo reactions with 

DiCN DiNC 

organometalllc substrates such as }fei(CO)jBr, [CpFe(C0)2(CS)JPF̂ , and 

others to yield products Mn(CO)g(L-L)Br and [CpFe(L-L)(CS)]PFg, 

respectively, where (L-L) represents either the DiCN or DINC llgand. 

The mass spectrum of the complex Mo(CO)̂ (DiNC) exhibited a parent ion as 

expected for the mononuclear product, providing strong evidence that a 

thlrteen-member chelate ring had been formed. Assuming the corresponding 

nitrile complexes to be isostructural, the DiCN - containing complexes 
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appear to be the first examples of dlnltrlle llgands capable of chelation 

through the nitrogen lone pairs to a single metal center. The DINC ligand 

joined several other llgands in the current literature as examples of 

chelating dilsonitrlles.̂ '̂̂  ̂

The present research is concerned with extensions of the preceding 

work in several directions. It was first of interest to extend the 

chemistry of DiNC llgands to other pseudooctahedral metal systems with 

the idea of more fully characterizing such large-ring chelates and to 

attempt preparations of complexes containing metals in unusual oxidation 

states. Secondly, it was hoped that complexes with preferred ligandr̂  

metal-ligand angles of greater than 90° could be prepared. The scope of 

the present research also includes the design, synthesis, and reactivity 

of other nltrile and isonitrile llgands which might form chelate rings 

with fewer or greater than thirteen ring members, as well as llgands with 

three and four linear donor groups. 

C. Principles of Ligand Design 

Of all the chelating llgands to be studied since the days of Jorgensen 

and Werner, the vast majority have employed donor atoms with tetrahedral 

or trigonal-planar geometries. That is, a general chelating ligand of 

the type ;A—X—(Y)^—X—A: will bind to a metal M with an M—A—X 

angle, 0, where 0 is something quite far from 180°. In most cases this 

angle will be somewhere between 105° and 120°, as with amines, phosphines, 

carboxylates, diolates, imines, etc. As an example, the structure of 

chelated ethylenediamine is shown in Figure 1. 
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ethylenediamine 

H 

^ s 110 c|> s 90 

succinonitrile 

CH 

M 

Q = 180° <t> Si 38 

Figure 1. Orientation of ethylenediamine and succinonitrile at a single 
metal center 
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Llgands such as acetylldes,̂  ̂nitrlles,̂ ® and isonitriles,̂  ̂however, 

usually bid to metals with an angle, 0, of approximately 180° (Figure 2). 

Realization of this fact is quite important in the design of potentially 

chelating llgands with linear donor groups. Both chemical evidence 

and the construction of molecular models agree that ethylenedlamine 

should chelate quite efficiently to a metal center while the analogous 

dinitrile, succinonitrile, won't. In fact, a simple calculation or 

molecular model shows that the -C=N: groups in the latter case diverge 

away from the metal center at an angle of about 38° (see Figure 1). The 

desired situation is one in which these groups converge at an angle of 

about 90°. 

It should be noted that metal complexes containing side-on bonded 

nitriles have been observed, but only in a small number of cases. These 

20 
include the carbonitrile CF̂ CN and several N,N-disubstltuted 

21,22 cyanamides. 

In order to achieve the desired end-on bonding in a bidentate 

ligand of the linear type, it is clear that the size of the potential 

chelate ring must be expanded. Space-filling molecular models suggest 

that such a system should contain at least twelve, ànd preferably, 

thirteen carbon, nitrogen and/or oxygen atoms. In this way, the metal-

binding chelate groups can be directed toward the metal in an end-on 

fashion at an angle of 90°. The diisonitriles 1,7-diisocyanoheptane 

and 1,8-diisocyanooctane would then be expected to yield chelated complexes 

with twelve and thirteen ring members, respectively. In several 
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M-̂ ^C=C—R acetylide 

d 

— + 

M—N=C—R nitrile 

— + 

M — — R  i s o n i t r i l ©  

Figure 2. Representations of metal-bound acetyllde, nitrile, and 
isonitrlle llgands 
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15 16 
studies ' carried out with a series of a,w-diisocyanoalkanes it was 

indeed found that the heptane and octane derivatives chelate to Rh(I), 

giving the structural unit [Bh(CN-(CH2)̂ -NC)2]'̂  (n = 7 or 8). With 

six or fewer methylene units, the ligands bridge two metal centers to 

2+ 
form the binuclear structural units tRh„(CN-(CH„) -NC),] (n = 3-6). 

i. z n 4 

Based on these studies, as well as on investigations with molecular 

14 models and the preliminary results of Angelici et al., it seems fairly 

certain that successful chelating linear ligands will have at least 

twelve or thirteen total ring members (i.e. seven or eight atoms joining 

the chelating groups). Smaller rings would most likely be strained, at 

the expense of metal-ligand bonding. Hence, ligand geometry should be 

adjusted so as to allow for maximum overlap of ligand and metal bonding 

orbitals, and therefore, maximum ligand-metal bond energy. 

Perhaps a secondary enthalpic consideration is important as well, 

involving ring strain not at the metal center, but within the organic 

portions of the chelate ring. It is known that "medium-sized" organic 

rings containing eight to eleven members suffer from enthalpic strains 

due to bond opposition forces, transannular van der Waal's interactions, 

and bond angle deformations. These factors are thought to be partially 

responsible for low synthetic yields and high strain energies for medium-

23 24 
to large-ring hydrocarbons ' and metal chelate rings of diamino-

25 
alkanes. Minor alterations of the chelate ring size and the introduction 

26 
of heteroatoms can also affect the strain enthalpy in the organic ring. 
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Were enthalplc considerations of singular importance in determining 

the free energy change for a chelation reaction, the design of bldentate 

llgands would be easier, since a number of ring sizes would be nearly 

equally effective once ligand-metal bonding was optimized. Experimentally, 

22 this is not so. In general, simple dlamlnoalkanes and dlphosphino-

24 
alkanes . function as effective chelating agents only for the ethane and 

propane derivatives. Higher homologues often show drastic drops in 

binding constants to the point that polymers are formed, rather than 

mononuclear chelate derivatives. The most likely explanation for these 

failures deals not with enthalpy, but with entropy. 

Entropie considerations relating to chelate formation can be 

divided into two categories: translatlonal entropy and conformational 

(or Internal rotational) entropy. Translatlonal entropy has long been 

6 27 thought to be of major importance in the chelate effect. ' As 

mentioned earlier, a reaction of the type ML̂  + L—L̂ M(L—L) + 2L 

takes place such that three particles are formed from two and on this 

basis, a large positive AS is expected. In addition. It has been 

28 
suggested that the llgand moiety (L—L) itself undergoes an Increase 

in translatlonal entropy upon binding since the compact chelate ring 

so formed undergoes fewer translation-inhibiting collisions with solvent 

molecules than does the unbound llgand. There appear to be no 

data or easy experiments, however, to support or discount this suggestion. 
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Nevertheless, considerations of translational entropy changes during 

chelation reactions are of great Importance in explaining experimental 

evidence referred to collectively as "the chelate effect". 

Translational entropy effects, however, do not account for certain 

other observations, namely the failure of large chelate rings to close. 

The explanation for this lies with conformational entropy effects. 

Consider that the greater the number of conformational degrees of 

freedom a free ligand has, the greater will be its conformational 

entropy. This applies as well to a bidentate ligand with one functional 

group bound to a metal. The ring closure or chelation process requires 

that many conformational degrees of freedom be lost, corresponding to 

a large entropy decrease. It appears that this is a factor in the failure 

of large chelate rings to close, despite favorable translational 

29 
entropy effects. Schwarzenbach described the same phenomenon in terms 

of the activity (i.e. effective concentration) of the free end of a 

singly-bound bidentate ligand. This activity is inversely proportional 

to the free volume swept out by the unbound donor group. The free 

volume is proportional to the length of the chain connecting the donor 

groups of interest. In addition, this volume can be seen by the use of 

molecular models to be greatest for highly flexible aliphatic chains and 

to decrease appreciably when the chain is restricted conformationally. 

Consideration of such conformational entropy effects leads to 

several conclusions. First, a good chelating ligand will have the 

smallest number of ring members necessary for completion of the chelate 
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ring. Second, the ligand will not have free rotation around all bonds, 

but will instead possess a number of bonds around which rotation is 

restricted, so as to decrease its number of possible conformations and 

its molar entropy. In practice, this may be accomplished by the 

introduction of multiple bonds, ring structures and/or bulky substituents 

which inhibit free rotation around bonds. Successive modifications of 

a "floppy" ligand by these methods should converge at a free ligand 

structure which closely resembles the constrained ligand structure 

within the chelate complex. The ultimate result of such changes leads 

one conceptually to a macrocycle and the so-called "macrocyclic 

30 31 
effect". ' It is of note also that strain within the distal organic 

ring portion of a macrocycle or totally rigid open-chain ligand is 

of little consequence in the overall AG of a chelate-forming reaction 

since this strain would have been introduced prior to, rather than in 

concurrence with, the introduction of the metal. 

A final point which has not been addressed up to this point is 

the influence of solvation effects. In solvents such as water, 

monodentate or open chain polydentate ligands are more highly solvated 

than their polydentate or macrocyclic counterparts, respectively. The 

breaking of fewer hydrogen bonds from the macrocyclic ligand tends to 

make AH and AS more negative than With more highly solvated displacing 

l i g a n d s . A s  f a r  a s  t h e  p r e s e n t  r e s e a r c h  i s  c o n c e r n e d ,  o n l y  

33 
relatively weak hydrogen bonds are expected between nitriles or 
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isonitrileŝ  ̂and organic solvents and so solvation effects are not 

expected to be nearly as important in these systems as they are in 

aqueous systems. 

Thus, the design of a chelating ligand requires attention to 

several factors. Perhaps most important is that the linear functional 

groups are allowed to interact comfortably with the metal. For 

linear nitrile or isonitrile chelating groups, the completed chelate 

ring should contain at least twelve members. Translational entropy 

considerations suggest that the larger the number of chelating groups, 

the more favorable the reaction since more unidentate ligands will be 

displaced in the chelation reaction. The minimization of conformational 

entropy loss can be accomplished by the introduction of ring structures 

or multiple bonds which restrict free rotation in the unbound ligand. 

The ligands of interest in the present research have been designed 

with the preceding factors in mind. Figures 3-6 show structures for 

the dinitrile, diisonitrile, trinitrile and tetraisonitrile ligands 

upon which this research has focused. The molecules depicted in Figures 

3 and 4 share a common structural feature, namely a dioxyalkylene unit 

connecting two aromatic rings. The metal-binding donor groups are 

attached to these aromatic nuclei. 

As discussed earlier, the size of a chelate ring is expected to 

be of some importance in determining the binding properties of a 

multidentate ligand. For the series of ligands in Figures 3 and 4, 

the chelate ring size can be changed by varying n, the number of 
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0(CH2)n0 

n = 2 

n = 3 

n = 4 

D iCN -2  

D iCN-  3  

D iCN-  4  

Figure 3, Structures of dinitrile ligands DiCN-n 
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R = H DiNC 

R = CMej t-BuDiNC 

SiMe 

n = 2 SiNC - 2 

n = 3 SiNC - 3 

r 

Figure 4. Structures of diisonitrlle ligands DiNC, t-BuDiNC, and SiNC-n 
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Figure 5. Structure of a trinltrile ligand, TriCN 
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Figure 6. Structure of a potentially chelating macrocyclic tetrakis 
(isonitrile) ligand, MacNC 
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methylene groups in the dloxyalkylene units. When n=2, as in DiCN-2, 

DiNC, t-BuDiNC, and SiNC-2, the resulting chelate ring would contain 

thirteen members. While molecular models suggest that chelation would 

be possible with as few as twelve ring members, the thirteen-membered 

rings appear to contain considerably less strain than twelve-membered 

ones. This enthalpic factor is to be weighed against an expectedly 

larger (unfavorable) entropy change for closure of the larger rings. 

Internal rotation within the DiCN- and DiNC-type free Uganda is 

worth comment as well. The aromatic ring, of course, restricts rotation 

around two bonds within each ligand framework, and results in the 

immobilization of two five-atom planes. In DiNC, for example, that plane 

contains the isocyanide carbon and nitrogen atoms, two aromatic carbon 

atoms and the oxygen atom. These planes should lend some rigidity to 

the uncomplexed ligands and work toward the desired situation in 

which the free ligand conformation is similar to that of the resulting 

metal chelate complex. Finally, the oxygen atoms might be expected 

to lower the strain enthalpy in the chelate ring relative to a case 

26 where these ring positions were occupied by methylene groups ; the 

oxy group is less sterically demanding than is the methylene group, 

due to its lack of hydrogens. 

The tridentate ligand, TriCN, represents a much different structural 

class than the molecules just discussed. By adopting a or 

structure, the three nitrile groups should be able to chelate to a 

single metal center simultaneously, with N-M-N angles of approximately 

90°. Molecular models suggest that a considerable deal of strain is 
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S V 

Figure 7. Possible conformations and chelating modes of the TriCN ligand 
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present in such an arrangement, but can be reduced by altering the N-M-N 

angles slightly or by Increasing the size of the metal atom. Â unique 

feature of this llgand is its high symmetry and concordant low 

conformational flexibility. Thus, TriCN would be expected to undergo 

chelation reactions with only marginal conformational entropy losses. 

Figure 7 shows the two possible conformations of the llgand and the 

modes (bidentate and trldentate) in which it might chelate to a metal 

from each of these conformations. 

The design of macrocyclic tetrakls (isocyanide) llgands follows 

from principles applied to llgands of lower dentlcity. For an allcyclic 

tetraisocyanlde llgand, it appears that at least 28 methylene units 

would be necessary to avoid undue strain in the chelate complex. For a 

llgand which contains four aromatic rings, such as MacNC (Figure 6), 

a total of 30 ring members is necessary. In either case, considerably 

larger rings would seem to be capable of chelating behavior though 

such rings might prove to be so conformationally "loose" as to prove 

detrimental to chelation on entropie grounds. Even the MacNC llgand 

in Figure 6 might be capable of considerable folding along either 

g plane to yield a structure having two mutually parallel bidentate 
v 

llgand planes. 



www.manaraa.com

20 

D. Complexes Containing Dinitrile Llgands 

To date, there appear to be no well-characterized examples of 

transition metal complexes containing chelating dinitrile ligands. 

As discussed in the last section, a chelating dinitrile llgand utilizing 

Its N lone pair would need to contain seven or eight methylene units 

linking the —C=N: donor groups. Unfortunately, the coordination 

chemistry of such potential llgands as 1,7-dicyanoheptane (nonanedi-

nltrile) appears to be unexplored at this point. 

On the other hand, some of the lower homologues have been examined 

In their reactions with transition metal salts and halides. For example, 

the adducts AgClÔ 'ZCNCCCHp̂ CN) and SnCl̂ yCNCCCHg)̂ ^̂ ) have been 

examined by X-ray crystallography.As expected, neither contains 

chelating dinitrile llgands. The former compound consists of a 

two-dimensional array of tetrahedrally coordinated Aĝ  ions, with 

35 
bridging adlponitrile units. Adlponltrlle adducts of cobalt(II) 

37 
halides have been Investigated as well. Structures and stolchiometries 

of these complexes vary according to the number of water molecules 

present and depending upon the identity of X (CI, Br, or I). In no 

cases, however, is there any spectral evidence for either uncoordinated 

or F-bound adlponitrile llgands; Infrared spectra of all the complexes 

consist of a single v(N=C) vibration shifted to a position 37 to 57 cm ̂  

higher than that in the free nitrile, as expected for end-on coordination. 
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Similarly, the glutaronitrlle (NC(CH2)gCN), adiponitrile, and 

pimelonitrile(NC(CHg)̂ CN) derivatives of Co(C10̂ )2 and Ni(C10̂ )2 are 

39 
nonchelated six-coordinate oligomers or polymers. 

In 1966 and in a later, fuller account, Farona and co-workerŝ '̂̂  ̂

reported the synthesis of a series of complexes of the general type 

M(C0)2(NCYCN)X (M = Mn, Re; Y = CHg, Ĉ Ĥ , Ĉ Hg, o-Ĉ Ĥ ; X = CI, Br). 

In concordance with the apparent lack of coordinated or free v(NC) 

bands in the infrared spectrum between 2250-2350 cm conductivity data, 

and an anomalous band at ~2070 cm these complexes were assigned 

structures in which the dinitriles chelated through their TT bonds to 

the Mn or Re metal centers. The bands at 2070 cm ̂  were assigned to 

the side-on bonded nitrile groups. Shifts to lower energy are expected 

and observed for -bound nitrile groups, though the confirmed 

cases of this bonding mode are characterized by much larger shifts. 

42 
Strong evidence presented by other workers, however, seems to indicate 

that the assignments oftt-chelation were in fact incorrect. In the 

solvent used for conductivity studies, Dunn and Edwardŝ  ̂demonstrated 

that considerable decomposition of Mn(C0)g(NC(CH2)2CN)Br occurred. 

Closer examination of the IR spectra of these compounds showed that 

v(NC) absorptions, though weak, were indeed present; Raman spectra 

revealed strong bands due to N=C stretching. Both observations are 

strong indications that a-bound nitrile ligands are present in 

Mn(C0)g(NC(CH2)2CN)Br. Accordingly, it is now well accepted that 
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Infrared v(NC) bends for coordinated nitrile llgands are in some 

18 
cases very weak or unobservable. Labelling studies employing 

C 0 demonstrated that the proposed v(NC) bands at ~2070 cm were 

v(CO) bands instead.The data collected on these compounds seem to 

42 
be consistent with a dinuclear, y-dihalo-bridged structure for 

which up to five infrared-active v(CO) modes are expected (Figure 8). 

43 
A later study by Dunn and Edwards suggested as well that phthalonitrile 

derivatives contained only a-bound nitrile ligands in the complexes 

M(C0)̂ [o-CgĤ (CN)̂ ]2Br (M = Mn, Re) and Rê (CO)[o-Ĉ Ĥ (CN)g] (X = 

CI, I). 

Unfortunately, the early reports of chelating short-chain 

dinitriles have prompted several other suggestions of chelation in 

similar systems which now appear to be questionable. For example, the 

ligand (o-CgĤ CN)P(CgHg)2 was proposed̂ '̂̂  ̂to either bridge or chelate 

in a IT-bonding fashion in M(CO)̂ (L-L')X complexes similar to those of 

Farona et al.̂ '̂̂  ̂ Raman spectroscopic investigations and molecular 

weight measurements by Storhoffhowever, strongly suggested that 

such complexes again were both end-on bonded and dinuclear. A number 

of investigations in the relatively recent literaturê *"̂  ̂have dealt 

with organometallic derivatives of short-chain dinitrile ligands. In all 

of these cases, infrared spectral parameters are normal for end-on 

bonding in the particular system of interest, but mononuclear structures 

have been assigned or tacitly assumed. 
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Figure 8. Likely structure of Mn(CO)-(NC(CH,)-CN)Br according to 
reference 38 
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E. Complexes of Diisonltrile Llgands 

There has been considerable interest in the coordination behavior 

of a,u-diisocyanoalkanes in the last six years. Much of this work has 

concentrated upon derivatives of rhodium, mainly because of the interesting 

chemical̂ "̂̂  ̂and spectroscopiĉ p̂roperties of the complexes 

[Eh(CNR)and [Rh2(CNR)g]̂  ̂(Figure 9). The latter dinuclear structure 

is formed with the majority of diisocyanides studied so far. Ligands 

capable of such bridging behavior include the single diisocyanides 

CN(CHg)̂ NC (n = 3,̂ ,̂57 ̂  15,16,58 ̂  16 615,16̂  and the substituted 

C O  

analogs, 2,5-diisocyano-2,5-dimethyl hexane (1), 1,3-and cis-l,2-diiso-

cyanocyclohexaneŝ  ̂(2-4), and 1,8-diisocyanomethanê  ̂(5). Also 

expectedly, the ligands 1,3-bis(isocyanomethyl)benzene (6) and 

l,4-bis(isocyanomethyl)benzene (7) form bridging compounds. 

Me 
Me 

Me 

Me 
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Figure 9. Structures of [RhgCCNRjg]̂ ^̂  a) in [Rh2(CNPh)g](BPĥ )2, 

reference 56; b) in [Rh2(CN(CH2)2NC)̂ ], reference 58 
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As mentioned earlier in this introduction, the only known chelating 

diisocyanides are 1,7-dlisocyanoheptanê  ̂and 1,8-diisocyanooctane,̂ '̂̂  ̂

which form twelve- and thirteen-membered rings, respectively, in complexes 

of Rh(I). 

The synthesis of these rhodium(l) monomers or dimers is straight­

forward, involving displacement of chloride and labile ligands from 

[Rh(C0D)Cl]2 or [Rĥ COÏgCljg in any one of a number of solvents. 

Metathesis with large anion-containing salts such as NĤ PFg or NaBPĥ  

gives the corresponding PF̂  or BPĥ  salts. The isolated solid products 

are often dark blue to purple in color. The low energy band responsible 

for these deep colors is due to a transition from a metal dgZ orbital 

perturbed by weak metal-metal bonding with an adjacent rhodium atom to 

the aĝ  orbital, which is predominantly N-C antibonding in character. 

This weak metal-metal interaction is also responsible for the 

oligomerization of [Rh(CNR)̂ ]̂  (or [Rh2(CNR)g]̂ )̂ units in solution. 

Efraty and his colleagueŝ "̂̂  ̂have prepared extended two-

dimensional polymers containing Rh(I) by the use of rigid bridging 

ligands (8-11). The formation of these extended structures provides an 

h !̂0rô  

O ^ 
X 9 10 11 
111 - — — 
C 

8 
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Interesting example of "template polymerization".̂ T̂he rigid 

linear llgand 4,4'-diisocyanobIpheny1 (9) has also been shown̂  ̂to 

form mixed-metal pentamers such as Rh[CN(CgĤ )(Ĉ Ĥ )NCMn(CO)̂ Br]̂  

Most of the examples above utilize dllsocyanldes as the sole llgand 

bound to the metal. A study by Howell and Rowan̂  ̂in 1981 describes 

reactions between 09̂ 5̂ 2(00)̂  and the diisonitrlles CN(CH2)̂ NC (n = 2, 

3, 4, 6) in which one CO llgand from each iron complex is lost, giving 

exclusively bridging complexes [Cp2Fe2(C0)g]2(CN-(CH2)Q-NC). In these 

reactions, a given isocyano group of the llgand can be either terminally 

bound to a single metal center, or can bridge the two irons In a dlmeric 

unit Cp2Fe2(CO)2(p-CO)(y-CNR). Reactions of dilsocyanoethane and 

-hexane with Fê (00)̂ 2̂ gave no chelating products (as should be expected), 

but rather the dlnuclear complexes (OC)̂ Fe-CN(CH2)̂ NC-Fe(CO)̂  in 

which the isocyano groups occupy axial coordination sites. 

F, Ligands With More Than Two Isonitrile Groups 

While not designed specifically for chelation to a single metal, the 

trifunctional llgand cis,cis-l,3,5-trlisocyanocyclohexane (TrlNC) 

(Figure 10) has been investigated as a potentially triply—bridging llgand 

66 
at the face of a triangular metal cluster. Unlike the dilsocyanoalkanes 

discussed heretofore, this molecule has only two important conformations, 

all-axial and all-equatorial. In the former conformation, coordination 

to a triangular metal array should be possible. Unfortunately, reactions 
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MVIL n 

a 

Figure 10. The TrlNC llgand shown In a) all-equatorial and b) all-
conformations 



www.manaraa.com

30 

with the triangular clusters Ru2(C0)̂ 2 and 0Sg(C0)̂ 2 led only to polymers, 

while reactions with Feg(C0)̂ 2 and [M(CO)jI] (M = Cr or W) yielded the 

derivatives [Ee(CO)̂ ]g(TriNC) and [M(CO)g]g(TriNC), respectively. These 

complexes most likely involve the TriNC ligand in its all-equatorial 

best be achieved by an endo-endo-endo-triisocyanoadamantane or similar 

structure. 

Tetradentate Isonitrlle ligands, especially macrocyclic ones, 

would be of great Interest because of the expected high stability of 

their metal complexes and also because of their resemblance to porphlne 

ligands. The only known tetrakls(isocyanide) is cyclotetrakis (2-

i8ocyano-l,3-xylenediyl) (12).̂  ̂ The ligand has been shown to undergo 

66 
form. Such results suggest that obligate facial coordination might 

12 

reactions with CuCl, Nl(CO)̂ , and CoClg, but no experimental details 

67 
are given. It is suggested that this ligand chelates as a macrocycle 

to a single metal, but construction of molecular models, as well as 
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structural factors considered earlier In this Introduction rule out 

such a structure. Full chelation such as this would require formation 

of four eleven-membered chelate rings, a situation which appears to 

be Impossible. Rather, It seems from studies with molecular models that 

llgand ̂  would form linear polymers In which alternate Isocyanlde 

groups bind to the same metal, forming slxteen-membered chelate rings. 

Such a structure Is represented in Figure 11. 

A final subject of some Interest is the synthesis of macromolecular 

polyisocyanides. The anchoring of homogeneous catalysts or catalyst 

precursors is of some importance, since such catalysts might retain 

the specificity of their homogeneous precursors while enjoying the 

mechanical simplicity of heterogeneous catalysts. Interesting results 

have been obtained with optically active dlphosphlne-functionalized 

polymers.Research involving polymer-supported isocyanides is 

also under way.Recent results from the laboratory of Beck̂  ̂

have shown that "chelation", that is, dlsubstltution at a metal atom, 

can be effected by certain poly(isocyanoalkylstyrenes). The existence 

or extent of dlsubstltution by the functlonalized polymer is affected by 

the chain length between the polymer network and the Isocyanlde donor 

groups, and therefore, by the distances between the donor groups 

themselves. In one sense, these polymers might be considered to be the 

largest chelating diisonitrile ligands known; on the other hand they 

are probably the most poorly characterized stereochemically. The 
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Figure 11. Possible polymeric structure of {[Ĉ Hg(CHg) 
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thought of these isocyanide groups converging across large pores 

o 74̂  
(50-250 A in the present case ) to bind a metal is interesting in its 

similarity to the general structural features of some metalloenzymes. 
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II. EXPERIMENTAL 

A. Techniques 

Unless stated otherwise, all manipulations were carried out under 

an inert atmosphere in 14/20 standard-taper Schlenk-type glassware or 

similar apparatus.Solvents, solutions and suspensions were transferred 

using syringes or stainless steel transfer (cannula) tubes. The inert 

atmosphere consisted of Argon or gas which had been dried by passage 

through a 2.5 cm x 35 cm column of 4A molecular sieves. The sieves 

were periodically regenerated by heating to ca. 300°C in vacuo for several 

hrs. The generation of an inert atmosphere in a reaction vessel was 

accomplished by evacuating the apparatus to 0.02 torr, back-flushing 

with inert gas and repeating at least twice. 

For reactions Involving especially water-sensitive compounds, all 

glassware was dried by baking at 100°C or by flaming the evacuated 

apparatus. When encountered, air-sensitive solids were handled in an 

inert-atmosphere glove-box or polyethylene glove bag. 

Recrystalllzations of compounds were generally carried out by one 

of two methods. Recrystalllzatlon from a hot solvent involved the 

preparation of a saturated, near-boiling solution of the substance, 

which was allowed to cool to room temperature, then to -20°C. The 

product was then Isolated by filtration and was washed with a small 

amount of the same cold solvent. Recrystalllzatlon from a mixed solvent 

system, for example CHCl̂ /hexane, was effected as follows. First, a 
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concentrated solution of the compound (here, in CHCl̂ ) was prepared and 

filtered. Then, one to two volumes of the less polar solvent were very 

slowly added via syringe such that two separate layers were formed. The 

mixture was allowed to stand at the indicated temperature until the 

solution was homogeneous. If no solid had formed, a further aliquot 

of the less polar solvent was added and the solution was allowed to 

stand. This process was conveniently carried out in a Schlenk tube, 

or for smaller amounts, in a 2-dram vial fitted with a rubber septum. 

B. Instrumental Techniques 

i. Routine infrared spectra 

Routine infrared (IR) spectra in the range 4000-600 cm~̂  were 

determined with Per kin Elmer 281 or 681 grating infrared spectrophotom­

eters. The calibration of each Instrument was checked periodically 

by comparing observed and actual values for the frequencies of lines in 

the spectrum of CO gas (300 torr, path length « 4 cm) in the region 

2242 - 2013 cm~̂ . Below 2000 cm calibrations were checked against 

the 1944.0 cm ̂  line of polystyrene film. Frequencies reported are 

accurate to + 2 cm 

The cells used for solution spectra consisted of two 19.5 x 38.5 mm 

NaCl plates separated by either 1 mm or 0.1 mm Teflon spacers. The 

short path cells were employed when monitoring reactions In ethereal 

solvents, which contain a band at ca. 1960 cm They were also used 
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when the solute concentration was so high as to prohibit the use of the 

larger path length. Solution IR spectra were always obtained in the 

double beam node with pure solvent in a matched cell as reference. 

Solid state IR spectra were measured as hydrocarbon oil (Nujol) 

nulls in which the mull was sandwiched between two circular 5 mm x 

25 mm NaCl plates. Instruments were operated in the double beam node 

with air as reference. 

Low frequency IR spectra (below 600 cm were measured as Nujol 

mulls on an IBM IR 98 Fourier Transform spectrometer. A film of the Nujol 

null on a single 1 mm x 18 mm polyethylene disc was found to be suitable 

for such measurements. 

2. Infrared integrated intensity measurements 

For air- and moisture-stable compounds, measurements were carried 

out on a Perkin Elmer Model 281 grating infrared spectrophotometer. The 

instrument was operated in the double-beam and absorbance modes with a 

slit width of approximately 1.4 cm Scans were made at the rate of 

5 cm~̂  min ̂  with an abscissa scale of 5 cm ̂  per linear cm. 

An IBM IR 98 Fourier Transform Infrared spectrometer was found to 

be more suitable for intensity measurements on all compounds, especially 

those exhibiting sensitivity to the atmosphere. The resolution of the 

Instrument was set at 2 cm with a zero-filling factor of 2. Data 

were plotted as absorbance scans In which the reference file was obtained 

by scanning the pure solvent In the sample cell. 
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The cell used was of the same dimensions described earlier, and 

possessed a 1 mm Teflon spacer. The cell path (0.102 ± 0.001 cm) was 

determined by the interference fringe method. 

All solutions were made up with dry, degassed CHgClg (Section U.C.). 

Samples (typically 1-3 mg) were weighed onto aluminum foil boats with 

the aid of a Perkin Elmer AD-2Z Autobalance. The boats were then inserted 

into small vials and the desired weight of solvent was introduced. For 

the air-sensitive solid [Co(t-BuDiNC)g] (PFg)̂ , a tared, sealed ampule 

of the complex was opened under an inert atmosphere and the solvent was 

added from a tared syringe. After transfer of the solution to the cell, 

the ampule pieces were dried and reweighed to determine the sample weight. 

Integrated intensities of the v(C=N) band of [Co(t-BuDlNC)g](PFg)g 

were estimated by the equation A = (2.303 c ̂  & ̂ ) log (I /I) Av̂ . 
0 vulâX j./ 6 

as outlined by Ramsay (Method I)̂  ̂since an interfering solvent band 

(2305 cm"̂ ) and sample decomposition precluded direct measurement of the 

area beneath the peak. For the other complexes, areas under absorption 

bands were measured with a polar planimeter. Apparent integrated 

intensities, B, were then calculated as B = (2.303 c ̂  Î. )̂/log (To/T) dv. 

In all cases, wing corrections were applied according to Ramsay (Method II). 

78 
Absolute integrated intensities. A, were determined by extrapolation of 

B vs. log(To/T). Linear least squares analysis was used to carry out the 

extrapolations. 

3. Nuclear magnetic resonance (NMR) spectra 

13 
Proton (89.55 MHz) and C (22.50 MHz) NMR spectra were measured on a 

JEOL FX90Q spectrometer in deuterated (>99.5% D) solvents. Chemical shifts 

are reported in ppm downfield (i.e. ppm 6) from tetramethylsllane (TMS). 
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Solutions for NMR analysis contained internal TMS as the internal 

13 
reference. Chemical shifts in C NMR spectra were referenced indirectly 

to the chemical shift of the solvent signal: CDClg, 77.06 ppm; CDgClg, 

53.80 ppm; (CD̂ )̂ CO, 29.80 ppm. Solutions of metal complexes normally 

79 contained Cr(acac}g as a shiftless relaxation agent to enhance the 

signal of quaternary carbons (e.g. in CO and CNR ligands). Carbon-13 

chemical shift assignments for aromatic ring carbon atoms were made by 

80 81 
calculating the spectrum empirically. ' 

4. Mass spectra 

Mass spectra were determined on solid samples by Instrument Services 

personnel using either Finnegan 2000 or ÀE1 MS902 mass spectrometers at 

ionization potentials of 70 or 20 eV. 

5. UV-VIS spectra 

Perkin Elmer Model 320 or Beckman DU-8 spectrophotometers were used 

for the measurement of electronic spectra. Solvents were purified as 

in section C. Rectangular quartz cells with 10 mm or 1 mm path lengths 

were employed. The positions of absorption maxima are given in nanometers 

(nm) and are accurate to + 2 nm. 

6. Conductivity data 

Specific conductances, L, were measured directly with a Markson 

Model 4402 conductivity meter and dip cell. The meter was calibrated 

against a standard aqueous KCl solution at 25°C. Molar conductances, A 

were calculated from the equation = 1000 L/C where C is the molar 

concentration of analyte. Concentrations were approximately 1 x 10 ̂  M. 

Spectral grade nitromethane (MeNÔ ) was employed as the solvent for all 

measurements. 
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7. Electrochemical measurements 

The apparatus used for cyclic voltammetry studies was kindly 

provided by Dr. Robert E. McCarley. Current and potential functions were 

controlled by a Princeton Applied Research Model 173 potentiostat/ 

galvanostat and Model 175 Universal Programmer. A three-electrode 

configuration was employed, consisting of a stationary Pt disc working 

2 
electrode of area 0.45 cm , platinum wire counter electrode, and saturated 

calomel (aqueous KCl) reference electrode. Dry dichloromethane (Section 

II. C) was used as solvent and contained 0.1 M Bû NPFg as supporting 

82 
electrolyte. The Bû NPF̂  was prepared by a literature method. Analyte 

concentrations were 5 x 10 ̂  M, in a solution volume of ca. 3 mL. All 

measurements were carried out under an atmosphere of dry Ar gas. 

8. Elemental analysis 

Carbon, hydrogen, and nitrogen analyses were performed by Galbraith 

Laboratories, Inc., Knoxville, Tennessee. 

9. Melting points 

For metal complexes, melting or decomposition points were observed 

on a Thomas hot stage apparatus and are uncorrected. The melting points 

of organic compounds were measured with a Thomas-Hoover capillary melting 

point apparatus belonging to Dr. J. G. Verkade, and are uncorrected. 
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C. Solvents 

Many of the solvents used were purified before use. All distillations 

were carried out under an atmosphere of dry Tetrahydrofuran (THF) 

was distilled from sodium/benzophenone. Anhydrous diethyl ether (Et̂ O) 

was obtained similarly. When employed as an aqueous extractant, however, 

EtgO was used as received without further treatment. Acetonitrile 

(CHgCN) was stirred over CaĤ  overnight and distilled successively from 

and CaHg. Pyridine was distilled from CaO. Triethylamine (Et̂ N) 

was dried by distillation from KOH. Unless stated otherwise, 

N,N-dimethylformamide (DMF) was distilled from CaO. Dichloromethane 

(CHgClg) and 1,2-dichloroethane (1,2-028̂ 012) were distilled from CaH2. 

Hexane and pentane were distilled from CaCl2 or P̂ Ô g. Benzene (CgHg) 

was stirred over Ĥ SÔ , then distilled. Methanol (MeOH) was AR grade 

and was simply purged with Ng prior to use. All other solvents were 

AR grade and were stored over activated molecular sieves (4A) and purged 

with dry N2 or Ar before being used. 

D. Reagents 

83 84 
Acetic formic anhydride (AFA) and the oxidant (Bû N)2Cr20̂  

85 
were prepared by literature methods. Malonyl fluoride, CH2(COF)2 was 

86 
prepared by reaction of malonyl chloride with SbF̂ . Chlorotrimethyl-

silane was distilled from CaH2 prior to use. 
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87 oo 
Group VII pentacarbonyl halldes Mn(CO)gCl, Mn(CO)gBr, and 

89 
Re(CO)gBr were prepared by halogen oxidation of the corresponding 

dlmetal decacarbonyls by the cited procedures and were sublimed before 

use. The dlnuclear complex Mh2(C0)̂ (CHgCN)2Br2 was prepared by the 

90 procedure described by Dunn and Edwards. The methods of Elsch and 

91 
King were used for the preparation of Cr(CO)̂ (nor) and Mo(CO)̂ (nor). 

The latter compound was generously provided by Mr. David E. Schlff. 

The complexes Et̂ N[M(CO)̂ 1] (M = Cr, W) were prepared by Dr. Michael H. 

92 
Quick using the method of Abel et al. Dr. Quick also supplied 

[CpFe(C0)2(CS)]PFg, which was prepared by the method of Busetto and 

93 Ângellcl. The referenced methods were employed for the preparation 

of [Cu(CH2CN)̂ ]BF̂ ^̂  and [Rh(C0D)Cl]2.*̂  

The llgands DINC and DlCN-2, as well as Mn(CO)g(DlCN)Br, were synthe­

sized by the published method.The complexes Mo(CO)̂ (DINC), W(C0)̂ (D1NC), 

and [W(CO)̂ (pip)]2(n-DlNC) were prepared according to the published 

procedureŝ  ̂by Dr. Michael H. Quick. All other reagents were purchased 

from commercial sources and were used without further purification. 

E. Procedures 

1. Synthesis and characterization of nltrlle llgands 

These compounds and their precursors have been characterized by 

elemental analysis (Table 1), Infrared spectroscopy (Table 2), NMR 

13 ' 
(Tables 3 and 5) and C NMR (Tables 4 and 6). 
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a. 1.3-bIs(2-cyanophenoxy)propane, DlCN-3 A solution of 

2-cyanophenol (4.78 g, 40.1 mmol) in 20 mL of DMF was added dropwise 

to a stirred suspension of NaH (0.96 g, 40 mmol) in 10 mL of DMF at 

80*C under Ng. After several hours, most of the NaH had dissolved and 

2.0 ml (4.0 g, 20 mmol) of 1,3-dlbromopropane was added. The mixture 

was then heated to 120°C. This temperature was maintained for 6 h, 

and the reaction was cooled to room temperature. The mixture was 

poured into 100 mL of well-stirred ice water. The slurry was filtered, 

and the solid washed with water (6 x 30 mL), cold MeOH (3 x 10 mL), and 

dried in vacuo to give the product (3.0 g, 53%) as a white powder. An 

analytical sample, mp 113 - 115®C, was obtained by recrystallization 

from hot CHCl̂ . 

b. 1,4-bis(2-cyanophenoxy)butane, DiCN-4 In a procedure 

identical to that described for the synthesis of DiCN-3, 2-cyanophenol 

(4.8 g, 40 mmol), NaH (0.96 g, 40 mmol), and 1,4-dibromobutane (2.4 mL, 

4.3 g, 20 mmol) yielded 2.5 g (43%) of the crude product. Recrystallization 

from hot CHClg gave colorless crystals, mp 151 - 3°C. 

c. 1,3,5-tris(2-methylphenyl)benzene, TriCĤ  The following method 

97 
is essentially that described by Wirth et al. The first step involves 

the conversion of 2-methylacetophenone to its diethyl ketal, which is 

accomplished as follows. To a solution of the ketone (25 g, 0.19 mol) 

and triethylorthoformate (52 g, 0.35 mol) in 52 mL of EtOH was added 

10 drops of concentrated hydrochloric acid. The flask was stoppered 

and allowed to stand for 52 h, giving a red solution. Neutralization 
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was effected by the addition of a sodium ethoxide solution prepared by 

the dissolution of 0.11 g of Na in 8 ml of EtOH. Distillation of the 

resulting yellow solution under water aspirator vacuum (24 torr) gave a 

fraction boiling at 55°C which was primarily HC(OEt)g, and a fraction 

at 122°C which was the desired ketal. 

The isolated ketal was dissolved in 100 mL of dry benzene and HCl 

gas was introduced into the stirred solution in the apparatus represented 

below. A steady flow of HCl into the stirred solution was maintained for 

CaCI. 

reaction 
mixture 

stirrer 

1 h, during which time the color of the reaction reached a very deep 

blue to purple color. Rotary evaporation of the reaction mixture gave 

a thick orange oil. This was diluted slightly with benzene and immediately 

chromatographed on a 44 mm x 80 cm silica gel column prepared with CCl̂ / 

Skelly C (2:1), eluting with the same solvent. The desired product eluted 

first, usually in a volume of ca. 2 liters after first detection. (The 
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product was easily detected by spotting the eluate onto a piece of 

indicating TLC plate and examining the plate under UV light!.) After 

removal of the solvent by rotary evaporation, the crude product was 

purified by digestion in 150 mL of boiling EtOH for 1 h. The product 

was Isolated by filtering the cooled (-20°C) mixture. Washing with 

EtOH at -20°C and drying in vacuo gave the compound as a colorless 

microcrystalline solid, mp 130-134®C (134-135°C, lit.).?̂  Yield: 

9.82 g, 45%. 

d. 1,3,5-tris(2-bromomethylphenyl)benzene, TriBr The following 

reaction was carried out as for the reported bromination of 2,11-di-

98 
methylbenzo[C]phenanthrene. In a typical preparation, 9.50 g (27.2 

mmol) of TriCHg was dissolved in 200 mL of degassed CCl̂ , N-Bromo-

succinimide (15.10 g, 83.9 mmol) was added, and the mixture was heated 

to a gentle reflux. The addition of 0.1 g of benzoyl peroxide in 2 

of CHClg initiated the reaction. After refluxing for 1.5 h, the reaction 

mixture was cooled to room temperature, and the succinimide by-product 

was removed by filtration. Carbon tetrachloride was removed on a rotary 

evaporator to give a yellow oil. This oil was stirred for 1 h with 20 mL 

of CCl̂ /CgHg (9:1 by volume) to precipitate the product as a white 

powder. The mixture was cooled at -20°C overnight. The product was 

filtered off and washed with a small amount of the cold solvent mixture, 

then dried in vacuo. The yield was 9.28 g (58%), mp 133 - 9°C. 
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e. l,3,5-tris(2-formylphenyl)benzene, TrlAl A mixture consisting 

of 8.94 g (15.3 mmol) of TrlBr, 21.52 g (30.74 mmol) of (Bû WOgCrgÔ  

and 35 mL of CHCl̂  was heated at reflux for 4 h. The green-black mixture 

was cooled to room temperature and poured onto 120 g of silica gel 

contained In a chromatography column 74 mm in diameter. The product 

was washed off the column with 2 L of Et̂ O. Evaporation of the solvent 

and recrystalllzatlon of the residue from hot EtOH (washing with EtOH at 

-20°C) gave the product as a light yellow solid, mp 166 - 8°C. Yield: 

3.72 g (62%). In Nujol mull, the product esdiibits two v(C=0) bands, 

rather than one, at 1706 cm ̂  (s, sh) and 1690 cm ̂  (s). A single, 

strong v(C=0) absorbance is observed in CHCl̂  solution at 1695 cm 

f. l,3.5-tris(2-formylphenyl)benzenetrioxime, TriOx A solution 

of TrlAl (3.47 g, 8.87 mmol) and NHgOH'HCl (2.47 g, 35.5 mmol) in a 

mixture of EtOH (20 mL) and pyridine (20 mL) was refluxed for 6 h. 

The solvents were removed by a short-path distillation at atmospheric 

pressure, followed by vacuum drying of the residue. Trituration of the 

resulting pale yellow oil with 15 mL of cold Ĥ O gave a white solid, 

which was Isolated by filtration, washed with cold Ĥ O (2 x 15 mL) and 

cold EtOH (2 X 10 mL). The product was dried in vacuo for 12 h. Yield; 

3.80 g (98%), mp 222 - 8°C. 

g. 1,3,5-trls(2-cyanophenyl)benzene, TriCN Methanesulfonyl 

chloride (MeSOgCl), a common dehydrating agent for the conversion of 

99 
aldoxlmes to nltriles, was employed for the conversion of TriOx to 

the trlnitrlle, TriCN. Thus, a solution of TriOx (3.66 g, 8.39 mmol) 
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In 55 mL of distilled pyridine was cooled to Ô C under The addition 

of MeSOgCl (5.0 mL, 7.3 g, 64 irnnol) caused a color change to yellow and 

the precipitation of a white solid. The mixture was stirred 12 h at 

30°C, then cooled in ice to 0*C. Water (150 mL) was slowly added to the 

cool solution, precipitating the crude product as a tan powder. This 

solid was isolated by filtration and washed first with Ĥ O (3 x 20 mL) 

then with cold (0°C) EtOH (3 x 10 mL). After being dried in vacuo, 

the product was dissolved in CHClg, treated with activated charcoal and 

filtered through an 8 mm layer of silica gel in a 60 mL fritted funnel 

in air. The volume of the solution was reduced to 40 mL and ca. 40 mL 

of EtgO was layered on the top of the solution, yielding, after 24 h, 

some yellowish crystals and a white solid. Another 20 mL of EtgO was 

slowly added and the solution was allowed to stand at -20°C for 24 h. 

The resulting solids were filtered off, washed with 20 mL of EtgO, and 

dried. Another recrystallization was carried out by slowly adding 80 mL 

of warm (45°C) EtOH to a warm CHClg solution of the product, followed by 

slow cooling to -20®C. The final product was filtered off; ,washed with 

cold (0°C) EtOH and dried in vacuo. The yield of white to pale yellow 

microcrystals was 2.36 g (77%), mp 266 - 8*C. MS: m/e 381.1 (base). 
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Table 1. Analytical data for nitrile ligands and their precursors 

Compound %C 
Calculated 

%H %N %C 
Found 

. %H . %N 

DiCN-3 73.37 5.07 10.07 74.17 5.51 10.18 

DiCN-4 73.95 5.52 9.58 74.27 5.89 9.48 

TriBr 55.42 3.62 - 55.64 4.18 -

TrlAl 83.06 4.65 - 83.27 4.97 -

TriOx 74.47 4.86 9.65 75.25 5.23 9.62 

TriCN 85.02 3.96 11.02 84.88 4.06 10.93 

Table 2. Infrared C=N stretching frequencies of nitrile ligands —1 , cm 

Compound Nujol Mull CHClg 

DiCN-2 2229 2232 

DiCN-3 2228 2231 

DlCN-4 2223 2231 

TriCN 2227 2228 
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Table 3.  ̂NMR data for DiCN ligands* 

Compound Ar-H O-CĤ  CĤ  

DiCN-2 7.67 - 7.04 m 4.54 8 

DiCN-3 7.64 - 6.90 m 4.34 t̂  2.39 p̂  

DiCN-4 7.62 - 6.90 m 4.21 m 2.12 m 

Ŝpectra measured in CDCl̂  solvent, 

= 5.8 Hz. 

Table 4. ^̂ C NMR data for DiCN ligands* 

Compound 1 2 3 4 5 6 CN OCĤ  CĤ  

DiCN-2 160.2 102.4 134.6 121.5 133.8 113.1 116.4 67.8 -

DiCN-3 160.2 101.8 133.4 120.8 134.4 112.3 116.3 64.7 28.6 

DiCN-4 160.7 102.0 133.7 120.8 134.4 112.4 116.5 68.7 25.8 
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Table 5.  ̂NMR data for TrlCN and precursors 

Compound Solvent ArH Other 

TrlCHg CDCI3 7.27 s, 7.26 s CH3 2.37 s 

TriBr CDCI3 7.53-7.33 m CHgBr 4.58 s 

TrlAl CDCI3 8.04 m, 7.67-7.49 m OHO 10.14 s 

TriOx CDgCN 7.88 m, 7.51-7.28m* OH , 
CH=N 

8.9 br, s 
8.14 s 

TrlCN CDgCN 7.94 s, 7.89-7.50m - -

CDClg 7.89 s, 7.83—7.44m 

Âlso Includes CH=N of Z Isomer (ref. 100). 

isomer (ref. 100). 
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13 SL 
Table 6. C NMR data for TrlCN and precursors 

Compound Observed Signals Assignment̂  

TriCHg 141.8, 141.6, 135.4 1,2,7 

130.4, 
127.3, 

130.0, 
125.9 

128.6, 3-6,8 

20.7 CHg 

TriBr 141.6, 140.4, 135.4 1,2,7 

130.9, 
128.3 

130.5, 128.7, 3-6,8 

32.3 CHgBr 

TrlAl̂  142.2, 136.4 1,2,7 

131.9, 
126.5, 

129.4, 
126.3 

129.1, 3-6,8 

189.8 CHO 

TrlCN 144.2 
111.3 
133.5 
130.6 
133.9 
129.5 
139.1 
128.2 
118.7 

1 
2 
3 
4 
5 
6 
7 
8 
CN 

În CDC1_ solvent unless stated otherwise. 
b 
Where more than one number Is listed on one line, the assignment 
could not be made with certainty. 

ĈDC1_/(CD_)_S0 solvent. This compound exhibits only six lines in 
CDCl̂ : 191:6, 144.1, 138.6, 133.8, 131.0, 128.5 ppm. 
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Table 6. Continued 

Compound Observed Signals Assignment 

TrlCN 144.5 1 
111.8 2 
133.7 3 
130.8 4 
134.2 5 
129.9 6 
139.6 7 
128.7 8 
119.0 CN 
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2. Preparation of nltrlle complexes 

Analytical data, IR spectra, ̂  NMR spectra, and NMR spectra 

for compounds of this type follow the preparative procedures in Tables 

7 through 11. Complexes of the type Mn (CO) ̂ (nltrlle) ̂Br, as well as 

the complex [Mn(CO)̂ TrlCN]PF̂ , were found to be photosensitive, even 

In the solid state. Thus, Isolated samples were stored in foil-wrapped 

vials in the dark. 

a. Mn(CO)̂ (DlCN-3)Br The reagents Mn(CO)̂ Br (0.104 g, 0.378 

mmol) and DlCN-3 (0.105 g, 0.377 mmol) were dissolved in 10 mL of CHCl̂  

and in darkness, the solution was refluxed for 1.3 h. After cooling 

the mixture, it was filtered with the apparatus being protected from 

light by aluminum foil. Solvent was removed at reduced pressure and 

the resulting yellow solid was triturated twice with 10 mL of EtgO, 

followed each time by décantation of the EtgO solution. The remaining 

solid was dried in vacuo and scraped from the Schlenk tube to give the 

pure product as a yellow mlcrocrystalline solid, 0.087 g (46%), mp 100 -

110°C (decomp.). 

b. Mn(CO)̂ (DiCN-4)Br In a procedure similar to that described 

for the DiCN-3 analog, DlCN-4 (0.175 g, 0.60 mmol) and Mn(CO)̂ Br 

(0.165 g, 0.60 mmol) were refluxed together in a CHgClg solution 

(46 mL) in the dark for 9 h. (An IR spectrum of the solution after 

1 h had revealed the presence of a small amount of Mn(CO)̂ Br.) The 

cooled solution was taken to dryness and evaporated. Trituration with 

EtgO (10 mL), then pentane (10 mL) gave the pure product as a yellow 

mlcrocrystalline solid, 0.178 g (58%), mp. 122 - 5°C. 
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c. Mn(CO)g(TriCN)Br The trinltrile ligand TriCN (0.261 g, 

0.681 mmol) and Mn(CO)̂ Br (0.252 g, 0.916 mmol) were refluxed together 

in CHgClg solution (35 mL) for 3.5 h in subdued light. After cooling 

the reaction solution, it was filtered and evaporated to leave a yellow 

residue of the product and Nh(CO)gBr. The latter was removed by four 

extractions with EtgO (10 mL each), and the remaining solid was collected 

on a frit and dried in vacuo. This yielded 0.215 g (52%) of Mn(CO)g— 

(TriCN)Br as a yellow powder, mp 159 - 162°C, which was analytically 

pure. 

d. [Mn(CO)gTriCN]PP̂  Halide abstraction from Mn(CO)g(TriCN)Br 

(0.067 g, 0.111 mmol) was accomplished by the addition of AgPF̂  

(0.0282 g, 0.112 mmol) in 7 mL of l,2-C2Ĥ Cl2 to a solution of the 

manganese complex in 3 mL of the same solvent. After stirring the mixture 

for 20 minutes, AgBr was filtered off. The volume of the now pale 

yellow solution was reduced to one-half, and EtgO was added until slight 

turbidity developed. After standing at Ô C for 2 days, the mother liquor 

was decanted away and the product dried in vacuo giving 18 mg (24%). 

The product is a yellow microcrystalline solid which melts from 172 -

179°C, then loses CO and resolidifies at 189°C. 

e. Re(CO)2(TriCN)Br TriCN (37.7 mg, 0.098 mmol) and Re(CO)gBr 

(40.8 mg, 0.100 mmol) were dissolved in 8 mL of l,2-C2Ĥ Cl2 and the 

solution was refluxed for 5 h. Dichloroethane was removed at reduced 

pressure. Dichloromethane (2 mL) was added to the pale yellow gummy 

residue to dissolve it, then hexane was added with agitation until the 
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turbidity of the solution persisted. The solution was filtered and 

allowed to stand at -20°C for 3 days. This produced a single lump 

of light yellow crystals, which were washed with hexane and dried, and 

weighed 71.8 mg (89%). An-analytical sample was obtained by preparative 

TLC (silica gel/CHCl̂ ) in air. The pure product was washed from the 

silica gel with CHgClg, precipitated from a concentrated CHgClg solution 

with hexane, and dried for 24 h in vacuo. The colorless solid melted 

from 190 - 195°C. The mass spectrum of Re(CO)g(TrlCN)Br showed peaks 

assignable to the parent ion [Re(CO)̂ (TRiCN)Brat m/e 729, 731 and 

733, corresponding to ̂ ^̂ Re ̂ B̂r, ̂ ®̂ Re ®̂ Br (and ̂ ^̂ Re ̂ B̂r), and 

187 81 
Re Br, respectively. 

f. [Re(CO)̂ (TriCN)]PFg A solution of Re(CO)̂ (TriCN)Br was 

prepared by heating TriCN (0.094 g, 0.246 mmol) and Re(CO)gBr (0.100 g, 

0.246 mmol) in 40 mL of 1,2-Ĉ Ĉl̂  at 75°C for 9.5 h. The volume of 

the solution was reduced to ca. 5 mL. While stirring, AgPF̂  (0.0645 g, 

0.255 mmol) in 6 mL of CHgClg was added, causing the precipitation of 

AgBr. Fifteen minutes later, an infrared spectrum showed the reaction 

to be complete (v(C=0) at 2060 s, 1958 s cm ̂ ) and the reaction mixture 

was filtered. Evaporation of the solvents gave a pale yellow gum. This 

residue was taken up in 3 mL of CHgClg, and 4 mL of hexane was layered on 

top of this. After standing for 5 days at -20*C, some white crystals 

and a dirty amorphous solid had precipitated. The crystals were easily 

isolated, washed with hexane and dried in vacuo for 6 days. The yield 
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of these white crystals was 0.084 g (43%), mp. 251 - 260°C. A further 

crop of the product (0.036 g, 18%) was obtained by addition of 13 mL of 

hexane to the mother liquor and storing the solution at -20°C for 5 

days. Total yield: 0.120 g (61%). 

3. Synthesis of a potentially chelating trlamine ligand 

a. l,3,5-tris[2-(azidomethyl)phenyl]benzene, TriN̂  A mixture of 

NaUg (0.208 g, 3.20 mmol) and TriBr (0.498 g, 0.851 mmol) in 25 mL of 

absolute EtOH was refluxed for 24 h. The cooled solution was added to 

50 mL of HgO and the resulting suspension was extracted with Et̂ O. The 

EtgO solution was dried over MgSÔ  and evaporated to give a pale yellow 

oil, presumably the triazide, (CgĤ CH2Ng)gĈ Hg. In CCl̂  the product 

exhibits characteristic absorbances of the azido group at 2087 cm ̂  

and 1302 cm An NMR spectrum in CCl̂  (Varian A-60 spectrometer) shows 

resonances at S 7.37 s (ArH) and 6 4.35 s (CHg-Ng), as expected. 

b. l,3,5-tris[2-(aminomethyl)phenyl]benzene, TriNĤ  The triazide 

was reduced by LiAlĤ  to the corresponding triamine as previously described 

for the synthesis of exo-bicyclo [3.2.î]-oct-3-en-2-yl amine.Thus, the 

whole of the triazide obtained in the above reaction was dissolved in 8 mL 

of THF and slowly added dropwise to a suspension of 0.184 g of LiAlĤ  

in 17 mL of THF. The mixture was then refluxed for 24 h under N̂ . To 

the cooled, stirred solution, was carefully added Ĥ O (1 mL), 7% KOH 

solution (2 mL) and 2 mL more of HgO. The resulting mixture was filtered 

and the solution dried over MgSÔ  and evaporated to an oil of the crude 

trlamine. In CDCl̂  solution, the product exhibits resonances at 7.32 m 
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Table 7. Analytical data for nltrile complexes 

Compound 
%C 

Calculated 
%H %N %C 

Found 
%H %N 

Mn(CO)2(DiCN-3)Br 48.23 2.84 5.63 48.14 3.09 5.50 

Mn(C0)2(DiCN-4)Br 49.34 3.15 5.48 48.96 3.34 5.35 

Mn(C0)2(TriCN)Br 60.02 2.52 7.00 59.64 3.03 6.88 

[Mn(C0)2(TriCN)]PFg 54.15 2.27 6.32 53.12 2.58 6.12 

ReCcOigCTriCNXBr 49.25 2.07 5.74 48.95 2.30 5.58 

[Re(C0)2(TriCN)]PFg 45.23 1.90 5.27 45.34 2.02 5.21 
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Table 8. Infrared spectra of nitrile complexes, cm 

Compound Medium v(CSN) v(C=0) 

Mn(CO)2(DiCN-2)Br CHClg 2270 w 2044 
1938 

s, 
s 

1968 s, , 

Mh(CO)2(DiCN-3)Br CHClg 2272 w 2044 
1942 

s, 
s 

1973 s. 

Mh(C0)3(DiCN-3)Br Nujol 2272 w 2042 
1936 

s, 
s 

1960 s, 

Mn(C0)g(DiCN-4)Br CHCI3 2272 w 2050 
1944 

s, 
s 

1972 s, 

lfai(C0)̂ (DiCN-4)Br Nujol 2269 w 2044 8, 1974 ssh, 
1959s, 1944 s, 
1896 sh 

Mn(C0)2(TriCN)Br CHCI3 2267 vw 
2228 w 

2046 
1941 

s, 
s 

1972 s, 

[Ma(C0)2(TriCN)lPFg Nujol 2268 w 2066 s. 1986 s 

Re(CO)g(TriCN)Br CHClg 2268 vw 
2228 w 

2039 
1916 

s, 
s 

1950 s. 

[Re(CO)-(TriCN)]PF Nujol 2267 w 2052 s, 1951 sbr 
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Table 9. Low-frequency infrared data for dinitrile complexes in the 
range 700-100 cm~̂  

Complex Infrared data 

m(C0)̂ (DiCN-3)Br 676 
464 

s, 628 s, 590 wsh, 568 w, 525 m, 498 s, 
msh, 402 w, br, 285 vw, br, 200 vw 

Mn(C0)g(DiCN-4)Br 678 
526 
288 

s, 633 s, 626 s, 600 w, 594 w, 567 w, 
m, 515 m, sh, 496 s, 478 m, 464 w, sh, 
w, sh, 268 w, 198 w, sh, 186 w 

Mn2(C0)g(CĤ CN)2Br2̂  677 
463 
219 

s, 634 s, 625 s, 601 w, 517 s, 488 w, sh, 
m, 418 w, sh, 403 w, 363 w, 230 m, sh, 
m, 193 m, 168 m 

Ŝpectrum is virtually identical to the published spectrum 
(ref. 90). 

1 
Table 10. H NMR data for TriCN complexes 

Compound Aromatic Protons 

Mn(CO)̂ (TriCN)Br̂  7.99-7.36 m, br 

[Mn(C0)g(TriCN)]PF̂  ̂ 8.00-7.35 m,..br 

Re(C0)̂ (TriCN)Br̂  8.00-7.42 m 

[Re(CO)g(TriCN)]PFĝ  7.96-7.60 m, 7.39 s 

*CDC1_ solution. 
K 
CDgClg solution. 
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Table 11. C NMR data for TriCN complexes 

Complex 1 2 3 4 5 6 7 8 CN CO 

free TriCN̂  144.2 111.3 133.5 130.6 133.9 129 .5 139.1 128 .3 118.7 -

Re(CO)2(TriCN)Br̂  143.7 
146.1 

111.3 
108.7 

133.4 
134.1 

131.2 133.6 
134.9 

130 .3 138.6 
140.6 

128 .7 118.7 
120.9 

191 .5 

[Re (CO) 2 (TriCN) 147.8 111.0 132.8 129.8 135.7 129 .4 140.0 129 .0 121.4 193 .9 

Mn (CO)2(TriCN)Br̂ '̂  143.7 
145.4 

111.1 
109.6 

133.3 
133.6 

130.8 133.6 
134.3 

130 .0 138.6 
140.1 

128 .4 119.3 
126.2 

219 .6 

Ln 
vo 

Ŵhere two data are presented for one C atom, the upper one is of lower intensity (usually 1:2) 
and is assigned to an atom associated with the uncoordinated portion of the ligand. 

CDClg solvent. 

ĈD Cl_ solvent. 
H 
Assignments for carbons 3 and 5 are somewhat uncertain. The largest peak in the spectrum is at 
133.6 ppm and is assigned to free C5 and coordinated C3. A peak of low intensity at 129.0 ppm 
remains unassigned. 

5 6 8 / 

•GrQ 
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(ArH), 3.89 s (CĤ ), and 1.85 br, s (NĤ ). Addition of HCl(g) to a CHCl̂  

solution of the trlamlne precipitated the hydrochloride salt as a white 

powder, 0.178 g (42%). 

4. Synthesis of SINC Uganda and their rhodium complexes 

The SINC llgands and their precursors, and rhodium complexes have 

been characterized by elemental analysis (Table 12), infrared spectra 

(Table 13), NMR (Table 14) and NMR (Table 15) spectra. Electronic 

spectra of the rhodium complexes are presented in Table 16. 

a. 2-aminoresorcinol The catalytic hydrogénation of 2-nltro-

102 resorcinol to 2-aminoresorcinol has been reported previously without 

experimental details. In a 1-L, 3-neck flask equipped with an overhead 

stirrer, rubber septrum, and a 2-stemmed gas inlet tube fitted with a 

rubber balloon, 25.2 g (0.162 mol) of 2-nitroresorcinol and 1.3 g of 

10% Pd/C catalyst under were dissolved in 300 mL of EtOH. The vessel 

was flushed with for 10 min and charged with Hg to fill the balloon; 

the stirrer was then started. The flask was periodically charged to 

replace reacted Ĥ . After about 1 h, the mixture achieved a jet-black 

color and uptake ceased. The Ô -sensitive solution was filtered under 

Ng and the solvent was removed at reduced pressure. Drying in vacuo 

gave 18.9 g (93%) of 2-aminoresorclnol as a light tan solid. 

b. 4-hydroxybenzoxazole The following procedure is an adaptation 

of a literature method which has been applied to the synthesis of 

103 
unsubstituted benzoxazole. In a 100 mL flask fitted with a Clalssen 

head and condenser, 18.0 g (0.144 mol) of 2-aminoresorcinol, 35 mL 
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(31.3 g, 0.212 mol) of HC(OEt)̂  and 0.30 mL of HgSÔ  were combined, and the 

flask was Immersed In an oil bath preheated to 120*C. Distillation of 

ethanol proceeded for ca. 20 mln at which time the mixture solidified. 

The solid mass was heated for an additional 30 mln at 155°C. The solid 

was cooled, crushed to a brown powder and sublimed (0.05 torr, 125*C) to 

give the product (14.8 g, 76%) as white crystals, mp 180 - 182°C (lit. 180-

181°C,̂ °̂  183°Ĉ °*). 

c. l,2-bls(A.4'-benzoxazoloxy)ethane, Dlbenz-2 In 20 mL of 

DMF under N̂ , 4-hydroxybenzoxazole (6.75 g, 50.0 mmol), KgCOg (7.00 g, 

50.0 mmol), and 1,2-dlbromoethane (2.15 mL, 4.70 g, 25.0 mmol) were heated 

at 65°C. After 25 h, an additional 1.0 mL of dlbromoethane was added, 

and the mixture was heated for 22 h more. The reaction was cooled to 

25°C and poured into 120 mL of rapidly stirred ice water. The resulting 

white powder was filtered, washed repeatedly with HgO, and then dried 

In vacuo. Excess starting material (ca. 2.5 g) was removed via sublimation 

(0.05 torr, 125°C). The residue was decolorized with activated charcoal 

and recrystallized from hot acetone to give the product as colorless 

needles (3.07 g, 41%), mp 163 - 5°C. MS; M*" (m/e 296, 0.6%); (CgHgNOg)"̂ , 

(m/e 162, 100%). 

d. 1,3-bls(4,4'-benzoxazoloxy)propane, Dlbenz-3 A procedure 

analogous to that above, starting with 3.00 g (22.2 mmol) of 4-hydroxy-

benzoxazole, 3.00 g (21.4 mmol) of K̂ CÔ  and 1.1 mL (2.2 g, 11 mmol) 

of 1,3-dibromopropane in 12 mL of DMF gave the product (3.34 g, 63%) as 

colorless needles, mp 128 - 9°C. MS: M̂  (m/e 310, 2.1%); 

(m/e 176, 100%). 
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e. 1,2-bls-[2,2'-(lsocyano)-3,3(trimethylslloxy)phenoxy]ethane, 

SINC-2 A sample of Dibenz-2 (1.91 g, 6.44 mmol) was suspended in 

100 mL of THF under N̂ , and the solution was cooled to -78°C. Over a 

period of five min, 5.90 mL (14.16 mmol) of a 2.4 M solution of 

n-BuLi in hexane was added, giving a yellow suspension. The mixture 

was stirred at -78°C for 20 min, then slowly warmed to 0°C, during which 

time a deep yellow-brown precipitate of the dianion formed. After 

stirring an additional 15 min at 0®C, 1.80 mL (1.54 g, 14.2 mmol) of 

ClSiMê  was added over a five minute period. The resulting yellow 

solution was stirred for 15 min at 0°C, then the solvent was removed 

at reduced pressure. The solid residue was treated with 10 mL of hexane 

at -10°C and the resulting suspension was transferred via a cannula 

tube to a frit and filtered. This procedure was repeated once. The 

resulting solid was washed twice with 4 mL of hexane and the washes were 

discarded. The remaining pale yellow solid was extracted with three 5 mL 

portions of EtgO, leaving LiCl on the frit. The ether solution was 

taken to near dryness, treated with 10 mL of hexane and cooled to -20°C 

to give the product as an off-white microcrystalline solid (0.991 g, 

35%) after décantation of the mother liquor and drying in vacuo. In air, 

the solid melts at 100 - 107°C, then resolidifies and melts again at 

162*0 (the melting point of Dibenz-2). MS; (m/e 440, 5.8%); (CgHgNOg)* 

(m/e 162, 62%); [SKCHg)̂ ]* (m/e 73, 100%). Proton and NMR of the 

product (Tables 12, 13) showed it to contain 10 - 15% dibenzoxazole 

starting material. 
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f. 1,3-bis[2,2*-(l8ocyano)-3,3 *-(trlmethylslloxy)phenoxy]propane, 

SlNC-3 This reaction was carried out as for SiNC-2 using 0.574 g 

(1.85 mmol) of Dlbenz-3, 38 mL THF, 1.70 mL (4.07 mmol) of 2.4 M n-BuLi, 

and 0.52 mL (0.45 g, 4.1 mmol) ClSlHê . Upon workup of the dry reaction 

residue, a minimum amount of cold hexane was used to transfer the 

suspension of product and LlCl to a frit. The solid was washed with 

two 3 mL portions of cold hexane to remove impurities. The product was 

washed avay from the LiCl with several portions of EtgO into a clean 

Schlenk tube. The solvent was removed to give a yellow oil which 

crystallized upon addition of 1 mL of hexane. The mixture was cooled to 

-20°C, and the solution was decanted from the pale yellow solid. Washing 

of the solid with two 2 mL portions of cold hexane and drying in vacuo 

gave 0.45 g of the product (54%), mp 76 - 82°C. The SiNC-3 thus obtained 

had a purity of ca. 90%, as determined by ̂  NMR, MS: (m/e 454, 

0.4%); (Ĉ gĤ ôNOg)'*' (m/e 176, 14.2%); [81(̂ 3)3]̂  (m/e 73, 100%). 

g. [Rh(SlNC-2)g]BPĥ  A solution of SlNC-2 (0.159 g, 0.361 mmol) 

in 6 mL of CgĤ  was added to a stirred solution of [Rh(C0D)Cl]2 (0.030 g, 

0.061 mmol). The solution was stirred for 3.5 h. During this time, a 

blue-green precipitate of [Rh(SiNC-2)̂ ICI formed. The solid was filtered 

off, washed twice with 5 mL of and dried in vacuo. Dlchloromethane 

(9 mL) was added to the solid to give a deep blue-green solution. After 

being filtered, the solution was treated with a filtered solution of 

NaBPĥ  (0.050 g, 0.15 mmol) in 5 mL of CĤ CN. The resulting solution was 

stirred for 30 mln, and solvents were removed at reduced pressure. The 

deep blue-green product, [Rh(SiNC-2)2]BPĥ , was extracted away from 



www.manaraa.com

64 

precipitated NaCl with CHgClg. After filtration, the solvent was slowly 

removed at reduced pressure, yielding the pure product as a deep blue-

green glass (0.140 g, 88%). 

h. [Rh(SiNC-2)2]PFg A sample of [Rh(SiNC-2)2]Cl was prepared 

from 0.565 g (1.28 mmol) of SINC-2 (10 mL of Ĉ Ĥ ) and 0.104 g (0.211 mmol) 

of [Rh(CQD)Cl]2 (15 mL of CgHg) as outlined for [Rh(SiNC-2)2]BPĥ . A 

similar metathesis procedure employing 0.086 g (0.47 mmol) of KPFg gave 

[Rh(SiNC-2)2]PFg as a deep blue-green solid, 0.335 g (70%). 

i. [Rh(SiNC-3)2]PFg A solution of [Rh(C0D)C]2 (0.091 g, 

0.185 mmol) in 15 mL of benzene was treated dropwise with 0.501 g 

(1.10 mmol) of SiNC-3 in 20 mL of Ĉ Ĥ . The mixture was stirred overnight 

to give a yellow-green precipitate of [Rh(SiNC-3)2]Cl which was filtered, 

washed with Ĉ Hg, and dried in vacuo. This sample was dissolved in 8 mL 

CĤ Clg to give a deep green solution. To this was added a filtered 

solution of KPFg (0.080 g, 0.43 mmol) in 8 mL of CĤ CN. The mixture was 

stirred 15 min, and the solvent was removed at reduced pressure. The 

dark green residue was extracted with CH2CI2. Removal of KCl by filtration, 

evaporation of the CH2CI2 at reduced pressure and drying in vacuo gave 

the product as a green microcrystalline solid, 0.137 g (32%). 

j. Reaction of [Rh(SiNC-2)2]PFg with Ig Treatment of a solution 

of [Rh(SiNC-2)2]PFg (0.0528 g, 0.0468 mmol) in 4 mL of CH2CI2 with 0.94 mL 

of a 0.025 M solution (0.024 mmol) of I2 in CH2CI2 caused a rapid color 

change from blue to orange. After stirring for 5 min, the volume of 

the solution was reduced to 1 mL. Addition of 4 mL of hexane precipitated 
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an orange-brown tar. The solution was decanted away from the tar, which 

was then dried in vacuo. The residue was taken up in 2 mL of CHgClg and 

4 mL of EtgO was carefully added. After standing for 3 days at p°C, 0.022 g 

of rust-colored product was obtained by décantation of the mother liquor 

and vacuum drying. An additional 0.018 g of product was obtained by 

addition of EtgO to the mother liquor and allowing the mixture to stand 

overnight at 0°C. The total yield was 0.040 g, representing a 68% yield 

as [Rhg(SiNC-2)̂ Ig](PF̂ )̂ . Analysis, calc'd. for C88̂ 112̂ 12̂ 2̂ 8̂ 16̂ 2̂ 2®̂ 8' 

% C, 42.07; % H, 4.50; % N, 4.46; % I, 10.10; found: % C, 41.19; % H, 

4.35; % N, 4.40; % I, 12.43. 

k. Reaction of [Rh(SiNC-3)2]PFg with A similar reaction to 

that described above was carried out between 0.0589 g (0.0582 mmol) of 

[Rh(SiNC-3)2]PT'g and 1.25 mL of 0.0273 M (0.034 mmol) in 6 mL of 

CHgClg. The reaction solution was filtered and reduced in volume to 

4 mL. EtgO (4 mL) was added to the solution, which was stored at O'C for 

6 h. A small amount (ca. 6 mg) of tan powder was removed by filtration. 

An 8 mL portion of Et̂ O was added to the remaining solution, and after 

standing at 25*C overnight, 0.031 g of rust-colored microcrystals had 

formed. The solid was isolated by décantation of the mother liquor and 

was vacuum dried. Yield: 38% as [Rh(SiNC-3)2I2I• Analysis, 

calc'd. for Ĉ gĤ QF̂ IgN̂ OgPRhSî : % C, 39.16; % H, 4.28; % N, 3.98; 

% I, 17.97; found: % C, 40.63; % H, 4.21; % N, 4.28; % I, 17.48. 
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Table 12. Analytical data for organic precursors and rhodium complexes 
of SiNC-2 and SiNC-3 V . 

Compound %C 
Calculated 

%H %N %C 
Found 
%H %N 

Dibenz-2 64.86 4.08 9.45 64.75 4.08 9.35 

Dibenz-3 65.80 4.55 9.03 65.66 4.63 8.99 

[Rh(SiNC-2)2]BPĥ  62.66 5.88 4.30 62.49 5.99 4.29 

[Rh(SlNC-2)2]PFg 46.80 5.00 4.96 .46.80 5.02 4.97 

[Rh(SiNC-3)2]PFg 47.74 5.23 4.84 48.21 5.03 4.94 
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Table 13. Infrared data for SiNC ligands, precursors and rhodium 
complexes in Nujol mull, cm~̂ ® 

Compound Infrared data 

Dibenz-2 3145 w, 1725 w, 1720 w, 1619 m, 1505 msh, 
1497 s, 1482 s, 1430 m, 1351 m, 1317 s, 1276 s, 
1248 w, 1239 w, 1206 w, 1104 s'sh, 1096 s, 
1078 msh, 1069 s, 1032 w, 869 w, 784 m, 749 msh, 
741 s, 721 m, 630 m 

Dibenz-3 3145 w, 1730 w, 1725 vw, 1620 s, 1499 s, 
1470 s, 1432 m, 1361 wsh, 1352 m, 1315 s, 
1277 s, 1249 m, 1205 m, 1110 s, 1094 ssh, 
1081 s, 1067 s, 1038 m, 872 m, 864 w, 789 s, 
750 s, 714 m, 632 m 

SiNC-2 3100 vw, 2130 s(C=N), 1611 wsh, 1588 s, 
1492 msh, 1470-1400 ?, 1305 m, 1258 s, 
1102 ssh, 1091 s, 1031 m, 910 w, 840 sbr, 
773 m, 748 w, 715 m, 688 w 

SiNC-3 3095 vw, 2126 s(CEfO, 1582 s, -1460 s?, 1396 m, 
1320 m, 1250 s, 1175 m, 1080 sbr, 1030 m, 
990 w, 930 w, 836 sbr, 778 m, 754 m, 720 m, 
675 w 

[Rh(SiNC-2) jBPh, 3053 w, 3030 w, 2200 wsh, 2162 vs(C=N), 1590 s, 
1580 s, 1472 s, 1422 w, 1305 w, 1255 s, 1171 w, 
1112 m, 1087 s, 1073 m, 1028 m, 909 m, 840 s, 
776 w, 740 wsh, 725 w, 711 wsh, 698 m 

[Rh(SiNC-2) ]PF, 2200 wsh, 2160 vs(C=N), 1595 s, 1588 s, 1475 s, 
1420 w, 1311 w, 1260 s, 1177 w, 1119 m, 1094 s, 
1032 m, 912 w, 835 sbr, 780 m, 774 msh, 755 wsh, 
717 w, 680 vw br 

[Rh(SiNC-3)„]PF -2200 wsh, 2159 VW(CeN) , 1582 s, 1470 s, 
1255 s, 1095 s, 1074 ssh, 1030 wsh, 830 sbr, 
775 m, 717 w, 670 vwbr 

*Bands in the regions 3000-2800 cm 1380-1360 cm and 1365-
1385 cm~̂  are, in most cases, masked by Nujol absorptions. 
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Table 13. Continued 

Compound Infrared data 

[Rh,(SlNC-2).I„]PF 2213 s(C=N), 1590 m, 1585 m, 1478 s, 1310 w, 
 ̂ 1261 s, 1177 vw, 1120 m, 1095 s, 1080 msh, 

1031 w, 909 w, 838 vsbr, 774 w, 711 w, 
663 vw, br 

[Rh(SiNC-3)„I,]PF, 2236 m(C5N), 1596 m, 1588'm, 1487 s, 1265 s, 
1105 s, 1076 m, 850 s, br, 788 m, 725 m 
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Table 14. H NMR data for SiNC llgands, precursors, and rhodium complexes 

Compound ArH OCH, CH„ Other 

Dibenz-2 

Dibenz-3 

SiNC-2 

SiNC-3 

c,d 

c,d 

[Rh(SiNC-2)2lBPĥ ® 

[Rh(SiNC-2)2]PFĝ  

[Rh(SiNC-3)2]PFg® 

7.37-6.97 m 

7.40-6.75 m 

7.29-6.48 m 

7.17-6.45 m 

7.35-6.09 m 

7.05-6.37 m 

7.30 ps-t (8.4) 
6.61 ps-t (7.9) 

4.82 

4.50 t 
(6.1) 

4.47 s 

4.29 t 
(5.9) 

4.27 s 

4.35 s 

4.30 ps-t 
(4.8) 

2.48 p 
(6.1) 

2.36 p 
(5.9) 

2.47 m 

OCH-N 8.35 s 

OCH=N 8.0 s 

GSlMeg 0.33 s 

OSlMCg 0.32 s 

OSiMê  0.13 s 

OSiMê  0.11 s 

OSiMê  0.26 s 

Coupling constants or apparent coupling constants (Hz) are given in parentheses; 
m = multiplet; ps-t = pseudotrlplet; p = pentet; t = triplet; td = triplet of doublets. 

Acetone-dg solvent. 

ĈDC1_ solvent. 
J  ̂
Also exhibits signals corresponding to a 10-15% impurity of the corresponding dibenzoxazole. 

"CDgClg solvent. 

ĈD̂ CN solvent. 
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Table 14. Continued 

Compound ArH OCĤ  CĤ  Other 

[Rh„(SlNC-2).I-](PF,)-̂  7.09,6.99, 4.36m - OSiMe. 0.17 s 
 ̂ 4 2 6 2 6.90, 6.47, 3 

6.38 

[Rh(SiNC-3)-I_](PF )/ 7.49 ps-t (8.5) 4.34 ps-t 2.57 m, OSiMe 0.28 s 
 ̂̂   ̂̂  6.72 ps-td (7.6, (4.5) br  ̂

1.0) 
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Table 15. C NMR data for SINC ligands and precursors 

Compound 2 4 5 6 7 8 9 OCHg ®2 

4-hydroxybenzoxazolê  152.5 150.5̂  111.1 127.1 102.7 150.5̂  127 .5 - -

Dibenz-2̂  151.0 151.8̂  108.7 126.3 104.0 151.8̂  _d 68.1 -

Dibenz-3̂  150.9 151.4̂  107.6 126.1 103.4 151.4 129 .6 65.7 29.3 

NC 1 2 3 4 5 6 lOCHg CHg 

SiNC-2C 170.6 152.7 113.1 129.7 106.0 155.3 _d 67.9 -

SlNC-3̂  170.3 152.4 112.5 129.6 105.3 155.3 109 .7 65.0 28.9 

Âcetone-d, solvent. 
b 
single resonance assigned to both atoms. 

^̂ DClg solvent. 

R̂esonance not observed. 
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Table 16. Eleccronic spectra of SiNC—2 and SINC-3 rhodium complexes in 1 liim cells 

lÔ C, M X max, nm 
-3 -1 -1 

10 ̂ E, M -̂ cm 

[Rh(SiNC-2)2]PFg® 5.81 252 

362 

38.1 

18.4 

intraligand 

607 0.22 

[Rh(SiNC-3)2]PF̂ * 5.8 259 

352 

406 

39 

35 

2.8 

intraligand 

463 0.58 

[Rh2(SlNC-2)̂ l2](PFg)2̂  _.c 365 _d 

427 _d 

478 _d dn̂ o* 

[Rh(SiNC-3)2l2]PFgb 3.1 262 

ca, 300, sh 

400 

74 

30 

9.1 

intraligand 

*CHgCN solution. Band assignments follow those in réf. 56. 

ĈH Cl solution. 

Concentration unknown. Band assignments follow ref. 105. 

Intensity ratios are 0.94; 1.00: 0.79 (in order of increasing wavelength). 
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5. Attempted preparation of a macrocycllc tetralsonltrlle complex, 

[Rh(MacNC)]BPĥ  

In a typical experiment, 0.067 g (0.051 mmol) of [Rh(SiNC-2)2lPFg 

in 1 mL of CĤ Clg was allowed to react with 8 vL (0.011 g, 0.102 mmol) 

of H2C(C0F)2. After 1.5 h, the deep green precipitate which had formed 

was isolated, washed with CHgClg, and dried in vacuo, yielding 0.038 g 

(64% as the title compound). In Nujol mull, the product exhibited the 

following bands: 2200 m, sh, 2155 s, v(C=N); 1775 m, br, 1745 m, sh, v(C=0). 

ĤNMR (DMSO-dg): 6.7 - 7.4 6 (m, br, 25H); 4.48 6 (m, br, 8H). 

The product is very slightly soluble in DMSO and insoluble in other 

common organic solvents. In DMSO solution, the two lowest-energy 

transitions were observed at 622 nm and 364 nm, with the latter one 

decreasing to half its original intensity in ca. 9 min. Analysis, 

calc'd. for BCggĤ N̂̂ Ô gRh: C, 64.71%; H, 3.85%; N, 4.87%; found: 

C, 56.62%; H, 3.82%; N, 5.02% (see Section III.B.3). 

6. Synthesis of t-BuDiNC. Characterization of the synthetic precursors 

of DINC and t-BuDlNC 

Analytical and spectroscopic data for these compounds are presented 

in Tables 17-20. 

a. 4-t-butyl-2-nitrophenol The reagents for this preparation 

were used as received, and the reaction was run under an air atmosphere. 

In a 2-L flask equipped with a thermometer, overhead stirrer, and dropping 

funnel, a solution of 100 g (0.67 mol) of 4-t-butylphenol in 350 mL of 

CgHg was cooled to 10*C. With vigorous stirring, 225 mL of 6 M HNÔ  was 
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added dropwise such that the temperature stayed below 15*C. The solution 

was stirred for a total of 4 h at 15°C and was subsequently poured into 

1 L of HgO. The mixture was separated in a separatory funnel, and the 

aqueous layer was extracted with 200 mL of EtgO. This ether extract was 

added to the layer, and the resulting solution was washed three 

times with 200 mL of 5% aqueous NaCl, then dried over CaSÔ  for 12 h. 

The solvents were removed on a rotary evaporator; the crude product was 

distilled (b.p. 81®C, ca. 0.1 torr). The product is a bright yellow oily 

liquid, mp 10-15°C. Yield: 81.6 g (63%). 

b. 1,2-bis-(4-t-butyl-2-nitrophenoxy)ethane, t-BuDiNOg Potassium 

carbonate (32 g, 0.23 mol) was added in portions of ca. 1 g over a period 

of 30 min to a hot (100°C) solution of 4-t-butyl-2-nitrophenol (81.6 g, 

0.418 mol) in 270 mL of undistilled DMF. The resulting red solution was 

heated further to 130°C and with stirring, 18.0 mL (39.2 g, 0.209 mol) of 

1,2-dibromoethane was added over a one-hour period. The mixture was 

stirred for an additional 24 h at 130°C, then cooled to room temperature. 

The mixture (now containing a large amount of precipitated KBr) was 

dumped into 3.5 L of stirred ice water, yielding a cloudy orange solution 

and a gummy tan solid. The majority of the solution was decanted away 

from the solid and discarded. The remaining slurry was extracted twice 

with 300 mL Et̂ O. The combined ether extracts were washed successively 

with water (3 x 300 mL), 5% NaOH (3 x 400 mL), and water (3 x 300 mL). 

The resulting pale orange solution was dried 12 h over CaSÔ , filtered. 
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and the solvent removed by rotary evaporation. The crude product was 

purified by cooling a hot ethanollc solution slowly to 25°C, then to 

-20*C. Large, pale yellow needles of the product were removed by 

filtration, washed with cold ethanol (2 x 100 mL), then dried in vacuo 

overnight. The yield was 37.1 g (42.4%), mp 117.5-119.5°C. 

c. 1,2,-b is-(2-amino-4-t-butylphenoxy)ethane, t-BuDlNĤ  This 

diamine was prepared by reduction of the corresponding nltro compound 

in a 3-liter, three-necked flask equipped with a gas-inlet tube, overhead 

stirrer and rubber balloon. Degassed ethanol (600 mL) was added to a 

mixture of t-BuDlNÔ  (34.3 g, 84.5 mmol) and 10% Pd/C catalyst (1.2 g). 

The apparatus was flushed several times with and the reaction was 

started by stirring the suspension rapidly. The balloon was refilled 

as necessary by introducing through the gas inlet tube. Stirring 

was continued until the mixture began to cool and hydrogen uptake ceased 

(ca. 1 h). The solution was heated to ~60°C, then the catalyst was 

removed by filtration in air. White needles of:the product which 

precipitated upon cooling were redissolved by heating, then water was 

added until the solution reached the cloud point. The solution was 

chilled at 0°C for 6 h, and the product was filtered in air, washed 

with 1:1 EtOH/HgO, the dried in vacuo for 12 h. The yield was 27,4 g 

(91%), of very pale pink needles, mp 120-123°C. An additional portion 

of less pure product (1.1 g), mp 117-120°C, was obtained by reducing the 

volume of the mother liquor. Total yield; 28.5 g (94.6%). 
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d. l,2-bls-(4-t-butyl-2-formainidophenoxy)ethane. t-BuDlFor In a 

250 mL, 3 neck flask equipped with a magnetic stir bar, thermometer, Ng 

inlet, and rubber septum, 26 mL of AFA was cooled to 5°C. A solution of 

t-BuDiNHg (27.7 g, 77.7 mmol) in 90 mL of freshly distilled CĤ Clg was 

cannulated into the flask, the reaction temperature being maintained at 

less than 20°C by immersion in an ice bath. The reaction was warmed 

to 25°C and stirred for 2 h. Extraction with water (2 x 100 mL) removed 

liberated acetic acid. The CHgClg solution was dried over MgSÔ , then 

evaporated on a rotary evaporator to yield a pink syrup. Diethyl ether 

(80 mL) was added, and upon stirring, a white precipitate of the product 

formed. After stirring for 4 h, the product was filtered, washed with 

30 mL EtgO, and dried in vacuo. Yield: 28.1 g (87.7%), mp 138-130°C. 

e. 1,2-bis-(4-t-butyl-2-isocyanophenoxy)ethane, t-BuDiNC The 

ligand, t-BuDiNC, was prepared by the phosgene dehydration of t-BuDiFor. 

Because of the toxic nature of phosgene (COCl̂ ), the reaction was carried 

out in an efficient fume hood. A 1.40 M solution of COClg in 125 mL of 

CHgClg was prepared by slowly passing COClg (g) through a preweighed, 

ice-cooled flask of degassed CHgClg. Phosgene exhaust vapor was 

trapped by a concentrated aqueous ammonia solution. An aliquot of 

this solution (95 mL, 133 mmol) was added via a dropping funnel to an 

ice-cooled solution of t-BuDiFor (26.9 g, 65.2 mmol) and triethylamine 

(42.0 mL 30.'5 g, 302 mmol) in 140 mL of dry, degassed CHgClg over a 

ten-minute period. The mixture was stirred for 30 min at 0°C, warmed 

to 25°C, and 80 mL of water was added. After stirring 45 min, the 

layers were separated. The organic layer was washed with 80 mL of 
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water, 80 nL of 0.1 M HCl, and 80 mL of water, then dried over MgSÔ . 

Removal of the solvent by rotary evaporation gave a brown oil. The crude 

product was purified by chromatography on a 70 mm x 26 cm column of 

silica gel, eluting with CHClg/pentane (4:1). Evaporation of the eluate 

gave a pale yellow oil. Addition of 80 mL of pentane induced 

crystallization of the product as colorless needles, 8.08 g, mp 97.5-100°C. 

Three additional crops with similar melting points were obtained by 

evaporation and similar treatment of successive mother liquors. Total 

yield: 16.4 g (66.5%). 

7. Preparation of complexes of DiNC and t-BuDiNC 

Analytical and spectroscopic data are found in Tables 21-28. 

a. cis-Cr(C0)̂ (DiNC) A THF solution (50 mL) of DiNC (0.265 g, 

1.00 mmol) and Cr(CO)̂ (norbornadiene) (0.254 g, 0.99 mmol) was refluxed 

for 6 h. The solvent was removed in vacuo, and the residue was washed 

with three 5 mL portions of hexane. Recrystallization of the residue 

from CHClg/hexane at -20°C gave the product as yellow crystals (0.306 g, 

72%); the mass spectrum showed a parent ion (M̂ ) at m/e 428, the [M-n(CO)]̂  

ions (where n = 2,3,4), and the [Cr(CgĤ NC0)jj]̂  ions for n = 1,2 at 

m/e 170 and 288, respectively. Traces of entrapped CHClg in this complex 

were removed by recrystallization from hot hexane solution under Ng. 

b. cis-Cr(CO)̂ (t-BuDiNC) A solution of t-BuDiNC (0.0743 g, 

0.197 mmol) and Cr(CO)̂ (norbornadiene) (0.0493 g, 0.193 mmol) in 5 mL of 

THF was refluxed for 5 h. Evaporation of the solution, drying in vacuo, 

and recrystallization of the residue from CHCl̂ /hexane at -20°C gave 
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Table 17. Analytical data for t-BuDiNC and precursors 

Compound %C 
Calculated 

%N %C 
Found 
%H %N 

t-BuDlNOg 63.45 6.78 6.73 64.02 6.60 6.85 

t-BuDlNHg 74.12 9.05 7.86 73.11 9.05 7.72 

t-BuDiFor 69.88 7.82 6.79 69.50 7.85 6.83 

t-BuDlNC 76.55 7.50 7.45 76.64 7.57 7.38 
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Table 18. Infrared date for DiNC, t-BuDlUC and their precursors in 
Nujol mull, cm~l® 

Compound Infrared Data 

DINO, 

DiNH. 

DiFor 

DiNC 

t-BuDiNO, 

t-BuDiNH„ 

1605 m, 1583 w, 1520 s (v̂ , NÔ ), 1475 s, 1366 s (v̂ , NOp 

1293 m, 1278 s, 1252 s, 1160 m, 1087 w, 1058 w, 1043 w, 

937 m, 850 w, 769 m, 743 m 

3442 m [v (NH)], 3360 [v (NH)], 1610 m, 1505 m, 1341 w, 

1275 m, 1244 w, 1212 s, 1143 w, 1081 w, 947 m, 923 w, 

743 msh, 735 m 

3295 s [v(NH)], 1673 vs [v(C=0)], 1596 m, 1535 s, 1490 m, 

1411 w, 1347 w, 1327 m, 1298 m, 1268 m, 1229 m, 1218 w, 

1159 m, 1110 m, 1054 m, 1038 m, 942 w, 888 w, 923 m, 761 m, 

745 s, 705 m, br 

3078 w, 2126 [V(CHN)], 1595 m, 1494 s, 1303 m, 1288 s, 

1258 s, 1164 m, 1117 s, 1064 m, 1045 w, 950 m, 765 s» sh, 

752 s 

1623 m, 1570 w, 1530 s [VgCNOg)], 1505 msh, 1382 msh, 

1355 s [Vĝ NOg)], 1302 msh, 1270 s, 1257 s, sh, 1212 w, 

1171 m, 1132 w, 1091 m, 1065 m, 949 m, 908 m, 900 m,sh, 

838 m, 827 m, 807 w, 764 w, 729 m, 667 w 

3430 s, 3334 m [v(NH)], 3065 w, 3050 w, 1629 m, 1606 m, 

1524 s, 1514 ssh, 1432 m, 1496 w, 1371 m, 1368 m, 1297 s, 

1256 m, 1215 s, 1208 ssh, 1164 s, 1094 m, 1069 m, 1044 m, 

952 m, 928 m, 881 m, 802 s 

B̂ands in the regions 3000-2800 cm 1380-1360 cm"̂  and 
1365-1385 cm"! are, in most cases, masked by Nujol absorptions. 
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Table 18. continued 

Compound Infrared Data 

t-BuDlFor 3335 m, 3275 m [v(NH)], 1682 s, 1669 s [v(C=0)], 1615 w, 

1594 m, 1538 s, 1497 msh, 1480 m, 1430 m, 1398 w, 1370 w, 

1310 m, 1280 m, 1235 m, 1178 m, 1137 w, 1108 m, 1045 m, 

933 w, 894 w, 859 m, 825 m, 768 w, 684 w, 640 w 

t-BuDlNC 2126 s [v(C=N)], 1608 m, 1530 msh, 1502 s, 1408 w, 1366 w, 

1270 s, 1255 s, 1140 s, 1105 m, 1067 m, 950 m, 904 w, 

883 w, 810 m, 772 w, 720 w 
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Table 19. NMR data for DINC, t-BuDiNC, and their precursors* 

Compound Ar-H CH2 t-Bu Other 

DiNC 7.50-6.84 m 4.51 s - -

DiNĈ  7.56-6.93 4.62 s - -

t-BuDiNOg 7.82 d(2.4), 7.63 
dd(2.4, 8.8), 
7.16 d(8.8) 

4.50 s 1.33 s — 

t-BuDiNHg 6.77 s 4.32 s 1.29 s 3.79 br, s NĤ  

t-BuDiFor 7.25-6.79 m 4.37 
4.35 

s, 
s 

1.30 s 8.7 7—8.04 m 
ira, cHp 

t-BuDiFor̂  7.25-6.81 m 4.35 s 1.30 s 8.40 br,s CH 
7.76 br,s NH 

t-BuDiNC 7.48-7.01 m 4.47 s 1.28 s -

t-BuDiNĈ  7.56-7.19 m 4.58 s 1.30 s -

t-BuDiNĈ  7.47-7.01 m 4.48 s 1.28 s -

*A11 spectra measured as CDCl» solutions unless noted otherwise. 
y  ̂
Acetone-dg solvent. 

'̂ Spectrum measured at 85°C. 

^̂ DgClg solution. 
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Table 20. C NMR data for DINC, t-BuDiNC, and t-BuDlNC precursors 

Compound NC OCHg CMê  Me Other 

DiNC 

DINĈ  

t-BuDiNOg 

t-BuDlNHg 

t-BuDiFor' 

t-BuDiNC 

t-BuDlNC* 

153.9 116.6 127.7 121.3 

155.1 116.7 128.5 122.0 

149.7 139.9 122.1 144.8 

144.2 136.2 112.3 144.9 

d e 118.6 d 

130.5 113.6 

131.6 114.6 

131.3 115.8 

115.0 113.0 

120.8 111.1 

167.7 67.9 

169.7 68.8 

— 68.9 

67.7 

67.2 

151.8 116.2 124.8 144.7 127.5 113.7 167.0 68.0 

152.2 116.4 125.3 145.1 127.9 113.8 167.9 68.5 

34.3 

34.1 

34.2 

34.2 

34.2 

31.1 

31.5 

31.3 (C=0); 
162.7(cls) 
159.2(trans) 
(1:2) 

Ŝpectra run in CDClg unless noted otherwise. 

Âcetone-dg solvent. 

"Exists in several diastereomeric forms resulting from cis-trans isomerism within the NHCHO (see 
ref. 106). Resonances given for C3, C5 and C6 are due to the transisomer. Unassigned 
resonances are at 122.2, 115.8, 113.4 and 112.5 ppm. 

Two of four lines at 146.1, 145.3, 144.9, and 144.7 ppm. 

'Three lines at 126.7, 126.3, and 126.0 ppm. 

^̂ DgClg solvent. 
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the product as opaque, pale yellow crystals (0.048 g, 46%); the mass 

spectrum showed at m/e 540 and [M-n(CO)]̂  ions for n = 3,4. Both 

the DINC and t-BuDiNC derivatives oxidize to unknown products after 

several months in air. 

c. cis-Mb(CO)̂ (t-BuDiNC) A solution of t-BuDlNC (0.0715 g, 

0.190 mmol) in 2 mL of Et̂ O was added to a solution of Mo(CO)̂ (norbor-

nadiene) (0.057 g, 0.190 mmol) in 2 mL of EtgO. After 10 min, 

needles of the product began to form, and the odor of norbornadiene 

could be detected. Solvent was removed under a'r.slow stream until 

the volume was 0.5 mL. The remaining solution was decanted off, and 

the resulting pale yellow crystals were washed with two 1 mL portions 

of cold hexane and dried in vacuo. Yield: (0.075 g, 68%); the mass 

spectrum showed at m/e 586 (for ̂ ®Mo) and peaks for [M-n(CO)]̂ , 

n = 2-4. The complex decomposes to a tan solid in the solid state when 

exposed to air over a period of several months. 

d. [Cr(CO)2(w-DiNC) A solution of AgPF̂  (0.230 g, 0.909 mmol) 

in 5 mL of acetone was added over a period of 10 min to a rapidly 

stirred solution of (Et̂ N)[Cr(CO)̂ 1] (0.402 g, 0.895 mmol) in 35 inL of 

THF at 25®C. After stirring for an additional 20 min, the orange 

solution was filtered to remove precipitated Agi. A CHgClg solution 

(6 mL) of DiNC (0.120 g, 0.455 mmol) was then added; the solution was 

stirred for 20 min and evaporated to dryness. The resulting yellow 

residue was taken up in 8 mL of CHCl̂  and eluted with 20 mL of CHCl̂  
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from a short column (1x7 cm) of silica gel to remove (Et̂ N)(PF̂ ). 

Evaporation of the CHCl̂  gave the product as a pale yellow powder, 

which was recrystalllzed from CHCl̂ /hexane at -20*C:to give pale yellow 

needles (0.201 g, 69%). The mass spectrum showed m"*" at m/e 648 as 

well as peaks for [M-n(CO) (n = 5-10), Cr(DlNC)̂ , and [Cr(CgĤ NCO) 

e. [W(CO)j]2(y-DlNC) An analogous procedure to that above, 

using 0.520 g (0.895 mmol) of (Et̂ N)[W(CO)gI], 0.230 g (0.909 mmol) 

of AgPFg, and 0.118 g (0.447 mmol) of DINC gave the product (0.169 g, 

41%) as colorless to pale yellow needles. Both the Cr and W derivatives 

are Indefinitely stable in air in the solid state; solutions exposed 

to air undergo no detectable decomposition over a period of several 

days. 

f. Cr(t-BuDlNC)g A solution of CrClg(THF)̂  was prepared by 

stirring 0.023 g (0.145 mmol) of finely ground anhydrous CrCl̂  with 

5 mg of Zn dust in 4 mL of THF until a homogeneous purple solution 

resulted. To this solution was added a solution of t-BuDlNC (0.167 g, 

0.444 mmol) in 4 mL of THF, causing an immediate change In̂ color to 

red-brown. The red-brown solution was transferred via a cannula tube 

to freshly prepared Na/Hg (0.045 g Na/2 mL of Hg). After stirring 

for 30 min, the resulting blood-red solution was transferred to a 15 mL 

centrifuge tube capped with a rubber septum, and the suspended NaCl 

was concentrated by centrlfugatlon. The resulting solution was filtered, 

evaporated at reduced pressure, and the residue dried in vacuo over­

night. The product is a deep red glassy solid. Yield; 0.112 g (65%), 
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mp 175°C. When exposed to air, the complex is slowly oxidized over 

a period of weeks. In chlorocarbon solutions, the complex is oxidized 

by air in a matter of hours to the monocation. The oxidation is 

complete within minutes when chlorocarbon solutions are chromatographed 

in air on alumina. 

g. [Cr(t-BuDlNC)g]PFg Acetone (3 mL) was added to a mixture 

of Cr(t-BuDiNC)̂  (0.050 g, 0.042 mmol) and AgPF̂  (0.012 g, 0.047 mmol). 

A deep red-black solution formed rapidly and a silver mirror was 

deposited on the walls of the flask. After stirring for 1 h, the 

solution was filtered to remove suspended silver. The reaction flask 

and frit were rinsed with acetone and the volume of the red-orange 

solution was reduced to 3 mL. Rapid addition of 10 mL of hexane gave 

an orange precipitate of the crude product, which was isolated by 

filtration, washed with ether, and dried. Yield: 0.052 g (83%). The 

product was recrystallized from CĤ Clg/hexane and obtained as an 

air-stable orange powder (0.038 g, 62%), mp 222°C, decomp. 

h. [Cr(t-BuDlNC)g](PF̂ )̂  In a reaction similar to the one 

just described, [̂ (t-BuDiNC)̂  (0.0538 g, 0.0455 mmol) and AgPFg 

(0.0225 g, 0.089 mmol) were allowed to react in 3 mL of acetone for 

1.5 h. Workup of the reaction as before gave the crude product as 

a red powder (0.059 g, 90%). Recrystallizatlon from acetone/hexane 

gave the product as an air-stable crystalline red solid (0.042 g, 64%), 

mp 260-280°C, decomp. 
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1. [l&iCt-BuDiNOglPFg A solution of m(CO)gCl (0.091 g, 

0.39 mmol) and t-BuDiNC (0.453 g, 1.20 mmol) in 11 mL THF was heated 

to reflux. During the first few hours of reaction, a pale yellow 

precipitate of [Mn(t-BuDiNC)̂ ]CI fonned. After 26 h, the mixture was 

cooled and filtered. The solid was washed with ether and dried in 

vacuo, giving 0.250 g (53%) of pale yellow [Mn(t-BuDiNC)g]CI. This 

salt was then metathesized to the PF̂  salt as follows. The crude 

solid was dissolved in CĤ Clg, filtered, and the solvent was evaporated. 

The residue was treated with 35 mL of EtOH and heated to boiling, 

whereupon all the solid dissolved. A filtered solution of 0.130 g 

of NĤ PFg in 7 mL of EtOH was added to the hot solution, causing the 

desired product to precipitate from solution. The mixture was cooled 

to room temperature, filtered, and the product washed with EtgO. The 

cream-colored product was then dried in vacuo. Yield; 0.255 g (49% 

from Mn(CO)jCl). The product turns yellow at ca. 200°C, but does not 

melt below 350°C. It appears to be quite stable ta air as a solid 

and in solution. 

j. [Mn(t-BuDiNC)(PFg)g Concentrated HNĜ  (2 mL) was added 

to a stirred suspension of [Mn(t-BuDiNC)g]PFg (0.0420 g, 0.032 mmol) in 

4 mL of glacial acetic acid in air, yielding a deep blue solution. 

Having stirred for 10 min, the mixture was poured into a stirred, 

filtered solution of KPF̂  (0.33 g, 1.8 mmol) in 4 mL of HgO. The deep 

blue precipitate which formed was isolated by filtration in air, 

washed with Ĥ O and dried in vacuo. Yield; 0.0434 g (93%). Infrared 

spectral analysis showed that some Mn(I) product was present. An 
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analytical sample was obtained by hexane precipitation from a CHgClg 

solution containing a small amount of concentrated HNÔ . The complex 

decomposes slowly in CHCl̂  or CHgClg solution to [Mh(t-BuDiNC)g]PFg, 

but as a solid, it is stable. 

k. [CpFe(CS)(t-BuDiNC)]PFg A solution of [CpFe(CO)̂ (CS)]PFg 

(0.0577 g, 0.158 mmol) and t-BuDiNC (0.0589 g, 0.157 mmol) in 12 mL 

of CHgCN was stirred overnight. Evaporation gave a brown oil, which 

was washed with 5 mL of Et̂ O and recrystallized twice from CHgClg/EtgO 

at -20''C to give 0.0571 g (54%) of the product as brown crystals. The 

product hydrolyzes slowly in the solid state after prolonged exposure 

to air. 

1. cls-FeCl2(t-BuDiNC)2 Anhydrous FeClg (0.017 g, 0.131 mmol) 

was dissolved in 5 mL of CĤ OH and with stirring, was treated with 0.102 g 

(0.271 mmol) of solid t-BuDiNC. The color of the solution changed 

from pale yellow to deep orange within 10 s. After several min, a 

small amount of fine orange precipitate formed. The mixture was 

stirred a total of 15 min, filtered, and reduced in volume until more 

precipitate of the product formed. This suspension was treated with 

7 mL of EtgO and allowed to stand for 20 h. The resulting orange powder 

was collected by filtration, washed with Et̂ O and dried in vacuo. Yield; 

0.0842 g (73%). Orange microcrystals of the product were obtained by 

allowing a concentrated, filtered CHCl̂  solution of the complex to 

stand for 2 days at room temperature. These were Isolated by décantation 

of the mother liquor, then vacuum dried for 2 days. Upon heating from 

200°C, the compound turned black at 215°C and melted from ca. 245-255®C. 
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m. trans-FeClg(t-BuDiNC)̂  A solution of crude cis-FeCl̂ Ct-Bu-

DINC)2 (0.101 g, 0.115 mmol) in 10 mL of CHgClg was treated with AlCl̂  

(0.005 g, 0.037 mmol). The solution was stirred for 15 min, then 

filtered to remove insoluble AlCl̂  hydrolysis products. After the 

solution stood for 15 days, the resulting lavender needles of the trans 

complex were collected by filtration, washed with CĤ Clg, then dried, 

yielding 0.0765 g (77%). The compound appears to be insoluble in all 

common solvents, including (CHg)2S0. Upon heating, the complex turns 

light brown at 235°C and melts with decomposition at ca. 255°C. 

n. [Fe(t-BuDiNC)2](PFg)2 A solution of cis-FeCl2(t-BuDiNC)2 

(0.153 g, 0.174 mmol) in 6.0 mL of CH2CI2 was treated with 0.0885 g 

(0.350 mmol) of AgPF̂  dissolved in 4 mL of CHgClg. This led to immediate 

precipitation of AgCl. The solution was stirred for 25 min, then 

filtered to remove the AgCl. To the resulting orange solution was 

added 0.0670 g of t-BuDiNC (0.178 mmol) in 4 mL CH2CI2, causing a 

gradual color change to brown. This solution was stirred for 20 min 

and evaporated in vacuo. The resulting residue was dissolved in 3 mL 

of CH2CI2, then treated with 9 mL of Et20 to give a tarry yellow residue. 

The solvent was decanted off and the residue was triturated to a yellow 

powder with Et20. The product was filtered, washed with ether, and 

dried. Yield: 0.128 g (50%). Careful recrystallization from CH2Cl2/Et20 

gave the analytically pure compound as an off-white powder. The compound 

decomposed without melting from 335-350°C. In the solid state, the 

complex appears to be quite air stable. Solutions exposed to air turn 

noticeably yellow after 1 day. 
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o. [COgCt-BuDlNC)̂ ](FFg)2 The reagents t-BuDiNC (0.153 g, 

0.406 mmol) and CoClg-GHgO (0.036 g, 0.15 mmol) were dissolved In 5 mL 

of EtOH to give a brown-red solution. The addition of 0.015 g 

(0.23 mmol) of Zn dust caused a gradual color change to deep yellow. 

The mixture was stirred for 5.5 h, after which solid KPF̂  (0.050 g, 

0.27 mmol) was added. After stirring an additional 1 h, the solution 

was filtered. Reduction of the volume at reduced pressure and ambient 

temperature was carried out until the product began to crystallize. 

The solution was cooled to -80°C and filtered. The resulting crude 

green-yellow product was washed with ether and dried. Yield; 0.062 g 

(36%). An analytically pure sample was obtained as yellow mlcrocrystals 

by recrystallization from EtOH at -20°C, mp 206-213°C. The product 

is stable in air in the solid state, as well as in solution. 

p. trans-CoBr̂ (t-BuDlNC)̂  A relatively dilute solution of 

0.500 g of t-BuDlNC (1.33 mmol) in 125 mL of acetone was treated with 

a solution of CoBr2*6H20 (0.210 g, 0.643 mmol) in 10 mL of acetone in 

air. A fine green precipitate of the product began to form after 

about 30 s. The reaction mixture was stirred for a total of 5 min, 

after which the product was filtered in air and washed with two 25 mL 

portions of acetone. The product was dried in vacuo to a very fluffy 

green powder, 0.486 g (78%), mp 254-263°C, decomp. 

q. trans-[CoBr„(t-BuDlNC)̂ iBr̂  A stirred suspension of 

CoBr2(t-BuDiNC)2 (0.102 g, 0.105 mmol) in 4.5 mL of CHgClg was treated 

slowly with Br̂  (8viL, 0.025 g, 0.157 mmol). Initially, a clear brown 

solution was formed. As the addition proceeded, a gelatinous precipitate 
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of orange-brown needles formed. The solvent was removed at reduced 

pressure, and the solid was dried in vacuo. The product was isolated 

without purification, yielding 0.113 g (89%), mp 248-258°C, decomp. 

The complex is stable in the solid state but is reduced by wet solvents 

to a deep brown compound with a v(CSN) value identical to that of 

trans-CoBr̂ (t-BuDiUC)̂ . 

r. [Co(t-BuDiNC)g](PFg)̂  A suspension of CoBr2(t-BuDiNC)2 

(0.198 g, 0.204 mmol) in 10 mL of CHgClg was treated with Brg (5.4vL, 

0.106 mmol) and the resulting clear brown solution was stirred for 20 

min. Addition of AgPFg (0.158 g, 0.125 mmol) in 10 mL of CHgClg caused 

precipitation of AgBr (91% of theoretical). The reaction mixture was 

stirred for 45 min, then filtered. A solution of t-BuDiNC (0.0775 g, 

0.206 mmol) in 4 mL of CĤ Cl̂  was added, and after stirring an additional 

30 min, the volume of the solution was reduced to 5 mL. The crude 

yellow-brown product was precipitated by rapid addition of 6 mL of 

EtgO and was isolated by filtration. The final product was obtained 

by recrystallization from CHgClg/EtgO (4 mL;6 mL) at -20°C, followed 

by filtration, washing with EtgO, and vacuum drying. Yield; 0.0736 g 

(22%). The yellow product is quite sensitive to atmospheric moisture 

and slowly decomposes even after brief exposure to air in the solid 

state. Upon heating, the product melts with decomposition at 240-245*C. 

s. Ni(CO)gDiNC Caution: Ni(CO)̂  is extremely toxic. This 

and similar reactions should be carried out in an efficient fume hood. 

The cold trap of the vacuum system used for the following preparations 
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contained a frozen solution of several grams of in ca. 15 mL of 

CHgClg to destroy trapped Nl(CO)̂ . Approximately 0.12 mL (0.16 g, 

0.93 mmol) of Ni(CO)̂  was condensed into a frozen (-196®C) solution 

of DiNC (0.336 g, 1.27 mmol) in 11 mL of CHgClg. Upon warming to room 

temperature, the solution began turning yellow as CO evolution commenced. 

After 15 min, a yellow precipitate began to form. The reaction was 

stirred for one more hour and the solid was filtered off, washed with 

5 mL of CHgClg at 0°C, and vacuum dried. The product is a light 

yellow microcrystalline solid. Yield; 0.213 g (44% based on DiNC), 

mp 140°C (decomp). Exposure to air for a period of a month or more 

leads to darkening of the solid sample. In solution, the product is 

easily decomposed by air. 

t. Ni(CO)g(t-BuDiNC) In a procedure similar to the one above, 

approximately 0.1 mL (0.13 g, 0.76 mmol) of Ni(CO)̂  was condensed into 

a frozen solution of t-BuDiNC (0.240 g, 0.638 mmol) in 5 mL of CĤ Cl̂ . 

After warming to room temperature, the reaction mixture was stirred 

for 1 h. The mixture was taken to near dryness and 3 mL of hexane was 

added to precipitate the product as pale yellow microcrystals, which 

were filtered off, washed with hexane and dried. Yield; 0.190 g, 

61%. Upon heating, the complex turns brown at ca. 140°C. A vapor 

pressure osmometry study of Ni(C0)g(t-BuDiNC) in the concentration 

range 0.01-0.02 M showed the complex to be mononuclear, with the 

experimentally determined molecular weight being 475 g mol ̂  (491 g 
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mol ̂  theoretical). These yellow solutions and others in chlorocarbon 

solvents decompose over a period of hours to a deep brown color by 

the Influence of either heat or air. 

u. Ni(t-BuDiNC)g Approximately 0.08 mL (0.10 g, 0.6 mmol) 

of Ni(CO)̂  was condensed into a frozen solution of t-BuDiNC (0.377 g, 

1.00 mmol) in 10 mL of Et̂ O, and the mixture was warmed to 20*C. The 

yellow product began to precipitate from solution soon after the onset 

of CO evolution. When gas evolution had ceased, the volume of the 

solution was reduced to 2 mL and 5 mL of pentane was added with 

stirring. The yellow residue was filtered off, washed with pentane, 

and dried in vacuo. Yield; 0,406 g (90%). Air-exposed samples are 

decomposed either as solids or in solution. Even under samples 

appear to darken noticeably at ambient temperatures in the laboratory. 

The sample decomposes quickly at ca. 120*C. 

V. [Cu(t-BuDiNC)2]BF̂  A solution of [Cu(CHgCN)̂ ]BÊ  (0.041 g, 

0.130 mmol) and t-BuDlNC (0.102 g, 0.271 mmol) in 10 mL of CHgClg 

was stirred for 50 min. Evaporation of the solvent gave a clear oil. 

This was washed twice with 10 mL of EtgO to remove excess ligand and 

CHgCN. Drying in vacuo gave an off-white solid which was scraped 

out of the reaction vessel. Yield; 0.080 g (68%), mp 190-200°C. 

The product is air-stable. 
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Table 21. Analytical data for DiNC and t-BuDiNC complexes 

Calculated Found 
Compound %C %H %N %C %H %N 

cis-Cr(COĵ (DiNC) 56.08 2.82 - 56.21 2.91 _a 

cis-Cr(CO)̂ (t-BuDiNC) 62.22 5.22 5.18 61.78 5.39 5.09 

cis-M6 (CO) ̂.(t-BuDlNC) 57.54 4.83 4.79 58.07 4.47 4.85 

[Cr(C0)̂ ]2(v-DlNC) 48.16 1.87 4.32 47.60 1.83 4.15 

[W(C0)g]2(y-DlNC) 34.24 1.33 3.07 34.06 1.34 3.14 

Cr(t-BuDiNC)2 73.19 7.17 7.11 72.69 7.31 6.92 

[Cr(t-BuDiNC)2]PFg 65.20 6.38 6.34 65.18 6.52 6.10 

[Cr(t-BuDiNC)3](PFg)̂  58.77 5.75 5.71 59.45 6.26 5.44 

[Mn(t-BuDlNC)2]PFg 65.05 6.37 6.32 64.51 6.33 6.28 

[Mn(t-BuDi]aC)̂ ] (PFg)̂  58.66 5.74 5.70 58.03 5.78 5.64 

cls-FeClg(t-BuDiNC)̂  65.53 6.42 6.37 62.67 6.54 5.98 

trans-FeCl„(t-BuDiNC)„ 65.53 6.42 6.37 65.21 6.18 6.31 

®Not determined. 
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Table 21. Continued 

Compound %C 
Calculated 

%H %N %C 
Found 
%H %N 

[FeCt-BuDlllOgKPFg)̂  58.62 5.74 5.70 58.93 5.90 5.70 

[Cô Çt-BuDiNÔ CPFg)̂  62.93 6.16 6.12 62.87 6.59 6.17 

trans-CoBr̂ (t-BuDlNC)„ 59.33 5.81 - 58.88 5.78 _a 

trans-[CoBr„(t-BuDlNC)„]Br̂  47.59 4.66 4.62 47.91 4.89 4.65 

[CoCt-BuDlNOg] (PFg)2 54.23 5.88 5.44 53.27 5.22 5.18 

Ni(C0)2DiNC 57.02 3.19 7.39 56.74 3.05 7.24 

Nl(CO)g(t-BuDiNC) 63.57 5.75 - 63.42 5.78 _a 

Ni(t-BuDiNC)̂  71.03 6.95 6.90 69.91 7.20 6.83 

[CuCt-BuDiNOglBFj, 63.82 6.25 6.20 63.96 6.44 6.21 
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Table 22. Infrared spectra of DiNC and t-BuDlNC complexes, cm~̂  

Compound Medium v(C=N), cm ̂  v(C=0), cm ̂  Other, cm ̂  

cis-Cr(C0)̂ (DiNC) CHCI3 
hexane 

2142 
2135 

w, 
w. 

2091 
2076 

cis-Cr(CO)̂ (t-BuDiNC) CHCI3 2143 w. 2089 

cis-Mo(CO)̂ (t-BuDiNC) CHCI3 2143 w. 2092 

[Cr (COOglgCw-DiNC) CHCI3 2146 w 

[W(C0)̂ ]2-(y-DiNC) CHCI3 2146 w 

CrCt-BuDiNOg CM 

n
 

1958 
1940 

vs, 
vs. 

br 
br 

[Cr(t-BuDiNC)3lPFg CHgCl-
Nujol 

2056 
2050 

vs, 
vs 

[CrCt-BuDiNC)̂ ](PFg)̂  CB-Cl-
Nujol'̂  

2153 
2155 

s 
s 

2009 s. 1932 vs , br 
2008 m. 1955 S, 
1942 s. 1936 sh 

2010 s. 1934 vs , br 

2014 s. 1935 vs , br 

2059 s. 1998 m. sh. 
1952 vs , br 

2060 s. 1992 w. sh. 
1950 vs , br 

v(P-F) 848 s' 

v(P-F) 844 vs' 

âken in Nujol mull. 
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Table 22. continued 

Compound Medium 

[Cr(t-BuDiNC)̂ ](SbClg)3̂  CHgClg 

[Mn(t-BuDiNC)„]PF- CH_C1„ 
 ̂  ̂ Nû ol̂  

[Mn(t-BuDiNC).](PF,)„ CH.Cl. 
 ̂  ̂̂  Nuîol̂  

[CpFe(CS)(t-BuDiNC)]PFg CByClg 

cis-FeClg(t-BuDlNC)̂  CHgClg 

Nujol 

trans-FeCl„(t-BuDiNC)̂  Nuj ol 

[Fe(t-BuDiNC)3](PF̂ )̂  CĤ Cl̂  

[Cô Ct-BuDiNÔ KPFg)̂  Nujol 

Ĝenerated by addition of SbCl̂  to 

v(C=N), cm ̂  v(C=0), cm ̂  Other, cm ̂  

2206 m 

2082 vs, v(P-F) 848 s* 
2071 vs 

2162 s v(P-F) 847 vs* 
2162 s 

2179 sh, 2159 m v(GHS) 1310* 

2200 w, sh, 2154 vs, 
br, 2126 s, sh, 
2190 w, sh, 2147 vs, 
2131 s, sh 

2146 vs v(Fe-Cl) 338 m 

2194 s, v(P-F) 847 vs* 
2195 s 

2150 s, sh, 2108 vs v(P-F) 846 s* 

gClg solution of Cr(t-BuDiNC)3 at -20*C. 
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Table 22. continued 

Compound Medium v(CSN), cm -1 v(C=0), cm -1 Other, cm 
-1 

trans-CoBr̂ (t-BuDiNC)̂  

[Co(t-BuDiNC)g](PFg)̂  

Ni(CO)g(DiNC) 

Ni(CO)g(t-BuDiNC) 

Ni(t-BuDiNC), 

[CuCt-BuDiNOgJBF̂  

Nujol 

trans-[CoBr̂ (t-BuDiNC) ̂jBr̂  Nujol 

CH„C1, 
Nujol̂  

CHClg 

CHClg 

CHCl 
Nujol 

CHCl-
Nujol 

2188 s, 2109 wsh 

2227 m 

2258 w, 
2259 w 

2146 s, 2092 s 2014 s, 1972 s 

2145 s, 2094 s 2014 s, 1975 s 

2040 vs, br, 
2160 wsh,;2020 vs, br 

2169 vs, 
2165 vs 

v(Co-Br) 158 s" 

v(P-F) 845 vs' 

v(B-F) 1047 s, br 
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Table 23. NMR data for DINC and t-BuDlNC complexeŝ  

Compound Solvent Ar-H CĤ  t-Bu Other 

cis-Cr(CO)̂ DiNC CDCI3 7.42-6.90 m 4.42 -

cis-Cr(CO)̂ (t-BuDlNC) CDClg 7.35-7.22 m; 6.98. -6 .88 m 4.37 1.29 

cis-Mo(CO)̂ (t-BuDiNC) CDCI3 7.35-7.25 m; 7.00--6 .89 m 4.38 1.30 

cis-Mo(C0)̂ (DiNC) CDCI3 7.43-6.91 4.43 -

cis-W(C0)̂ (DiNC) CDCI3 7.41-6.91 m 4.43 -

[Cr(C0)g]2(v-DiNC) CDClg 7.46-6.90 m 4.50 -

[W(C0)̂ ]2(p-DiNC) CDCI3 7.47-6.93 m 4.51 -

[W(C0)̂ (pip)]̂ (y-DiNC) CDCI3 7.57-6.98 m 4.56 -

Cr(t-BuDiNC)2 C6»6 7.17-6.57 m 3.78 1.04 

[Mn(t-BuDiNC)2]PFg CDgClg 7.41-7.29 m; 7.10-•6 .90 m 4.41 1.26 

Ĉoupling constants for doublets (d) and doublets of doublets (dd) are given in parenthesis. 
Where more than one signal is observed, the approximate ratio is given in brackets. 

P̂iperidine (pip) ligand signals: 3.28 m; 2.62 m; 1.50 m. 
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Table 23. continued 

Compound Solvent Ar-H CHG t-Bu Other 

[CpFe(CS)(t-BuDlNC)]PFg (00̂ )200 7.67—7 • 25 in 4.53 1.30 Cp 5.58 s 

cis-FeClg(t-BuDlNC) CDCI3 7.71-6.85 m 4.39 br 1.31, 
1.23, 
[1:1] 

[FeCt-BuDlNC)̂ ](PFg)2 CD2CI2 7.60-7.50 m; 7.23-7.13 m 4.50 1.30 

[COGCT-BuDlNC)̂ ](PFg)2 CDgClg 7.50-6.94 m 4.51, 
4.15, 
[4:1] 

1.24, 
1.16, 
[4:1] 

[CoBr.(t-BuDlNC),]Br- CD-CN 7.95 d (2.4); 7.67 dd 4.54 1.35 
Z Z J J 

(2.4, 8.8); 7.19 d (8.8) 

N1(C0) 2(D1NC) CDCI3 7.40-6.92 m 4.41 

Nl(C0)2(t-BuDiNC) CD2CI2 7.44-7.31 m; 7.08-6.97 m 4.36 1.30 

NlCt-BuDiNC)̂  CDCI3 7.33-6.86 m 4.35 1.25 

[CuCt-BuDiNOgjBFj, CDgClg 7.61-7.15 m 4.50 1.30 
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Table 24. C NMR data for DINC and t-BuDlNC complexes 

Compound 

DINC 

t-BuDiNC 
a,b 

Cr(CO)̂ (DiNC) 

Cr(CO)̂ (t-BuDiNC)* 

Mo(CO)̂ (DiNC)̂  

Mo(CO)̂ (t-BuDiNC)® 

[Cr(C0)g]2(W-DiNC)* 

[W(CO)5l2(y-DiNC)® 

CrCt-BuDiNC)̂  ̂

[MnCt-BuDlNOglPFĝ  

[CpFe(CS)(t-BuDiNC)]PFĝ  

[Fe(t-BuDiNC)2l(PFg)2̂  

Ni(C0)2(t-BuDiNC)h 

Ni(t-BuDiNC)2̂  

[Cu(t-BuDiNC)2]BF̂  ̂

153.9 116.6 127.7 121.3 130.5 113.6 

151.8 116.2 124.8 144.7 127.5 113.7 

154.2 120.1 126.2 122.1 129.0 114.8 

151.7 119.3 123.0 145.2 125.6 114.3 

154.1 119.3 126.4 122.0 129.3 114.7 

152.1 119.0 123.8 145.7 126.4 114.7 

154.6 117.8 126.3 121.2 130.1 112.4 

154.7 117.2 126.6 121.3 130.4 112.4 

152.0 -g 124.6 144.4 127.2 113.6 

152.6 120.1 123.4 145.8 126.7 115.3 

153.3 119.0 124.5 146.0 129.1 116.1 

152.8 117.1 124.1 146.0 126.7 115.0 

152.1 119.5 123.4 146.0 126.7 115.5 

151.6 121.1 122.5 145.4 124.4 115.3 

152.9 116.4 124.1 146.1 129.5 115.8 

ĈDCl̂  solvent. 

C spectral data in DC2CI2 solvent presented In Table 20. 

t̂rans CO. 

ĉis CO. 

1̂83 13 = ̂ 27 s . 
g w- c 
CgDg solvent. 

R̂esonance not observed. 

ĈDgClg solvent. 

Âcetone-dg solvent. 

Q̂uestionable assignment. 
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NC OCHg CfCHg)̂  CCCHg)̂  Other 

167.7 67.9 — — 

167.0 68.0 34.6 31.4 

182.2 67.8 — — CO: 220.1, 216.1 

180.9 68.0 34.0 31.0 CO: 220.1, 217.0 

171.2 67.8 — — CO; 209.7, 205.8 

170.4 68.3 34.4 31.3 CO; 210.2, 206.0 

175.5 66.8 — — CO: 216.8̂ , 214.( 

155.6 66.9 — — CO: 196.4̂ , 194.1 

170.2 67.8 38.8 30.9 

_g 68.6 34.6 31.4 

162.3 69.2 34.7 31.5 Cp 90.0, CS 322. 

153.4̂  67.8 34.5 31.0 

166.4 69.4 34.4 31.2 CO; 197.8 

158.8 69.4 34.0 30.9 

g 69.1 34.6 31.2 
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Table 25. Electronic spectra of some homoleptlc t-BuDlNC complexes 

Complex Solvent X ; 
max 

inm(10~̂ e) Assignment̂  

Cr(t-BuDiNC)- THF 468 sh (44.1) * dir-»-ir j 
420 (47.2) DTR->ir̂ * 
320 sh (32.3) 

-- V * 
dimr. 

300 (32.7) dTr-HrjJ* 
286 (37.1) Intra-

ligand 
[Cr(t-BuDiNC)-iPFg CH,C1, 443 sh (30.9) dir-»ir * 

J 365 (49.6) dir-tiTy 
276 (36.3) intraligand 

[MnCt-BuDiNC)̂  IPFE CHGCLG 341 
249 sh 

(60.9) 
(47.1) 

dTT-MTy* 
intraligand 

[Mn(t-BuDiNC)-](??&)2 CH„C1, 684 br (4.4) ? J 481 br (3.3) ? 
355 sh (8.9) ? 
303 (42.4) 
282 sh (37.3) dn-MTv* 
246 sh (54.3) intraligand 

[Fe(t-BuDiNC)-](PFG)2 CHLCl. 298 (30) DTR-̂ v* J 258 (64) DIR-MR^* 
247 sh (56) intraligand 

[Co(t-BuDiNC)g ](PFG)3 CĤ Cl̂  307 
255 

(29) 
(77) 

dir-»ir. * 
DW-MT^* 

248 sh (71) intraligand 

Âssignments made as in reference 107. 
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Table 26. Conductivity data for some t-BuDiNC complexes* 

Compound 
3 

Concentration x 10 , M Ajjjohm ̂ cm̂ mol ̂  

[Cr̂ t-BuDiNC)̂ ]??̂  1.01 83.1 

[Cr(t-BuDiNC)3)(PFg)2 0.99 157 

[Mh(t-BuDiNC)3]PFg 1.00 84.8 

[Fe(t-BuDiNC)3](PFg)2 1.02 156 

[C02(t-BuDlNC)5](PFg)2 1.03 148 

[CoBr2(t-BuDiNC) gjEr̂  1.03 79.7 

[Co(t-BuDiNC)3](PFg)3 1.10 229 

[Cu(t-BuDiNC)2]BF̂  0.97 84 

Êxpected ranges for In CH-NO„; (1:1), 75-95; (2:1), 150-180; 
(3:1), 220-260 (ref. 108). 
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Table 27. Linear intensities (t) and integrated intensities (A) of the v(CN) bands in t-BuDiNC and 
homoleptic complexes in CHgClg 

Compound v(C=N) t̂otal̂  Vtal̂ "̂®' ŝpecifiĉ  

t-BuDiNĈ  2130 676 2.86 X 10̂  (7) 1.43 X 10̂  

t-BuDiNC® 2129 603 2.22 X 104 (1) 1.11 X 104 

tCoCt-BuDiNC)̂ ](PFg)̂ ® 2258 3.6 X 10= 2.9 X 104 (2) 0.5 X 10̂  

[Fe(t-BuDiNC)̂ ](PF̂ ) 2194 3.77 X 10̂  29.9 x: 104 (6) 4.98 X 104 

[FeCt-BuDiNOg] (PFg)2® 2188 3.58 X 10̂  27.7 X 10̂  (1) 4.61 X 10̂  

[MNCT-BUDINOGJPFG'^ 2082 1.01 X 10̂  147. X lo"̂  (7) 24.5 X 10̂  

[MHCT-BUDINOGLPFG® 2982 9.05 X 10̂  118. X 10̂  (4) 19.7 ; X 10̂  

CrCt-BuDiNC)̂ ® 1958 7.77 X 10̂  203. X 10̂  (2) 33.8 X 10̂  

Ûnits of M ̂ cm ̂ . 

Ûnits of M ̂ cm 

ŝpecific = #(CN) groups ' 
rE 681 instrument. 

®IBM IR 98 instrument. 



www.manaraa.com

Table 28. Cyclic voltammetric datâ  

Complex -1 Scan rate, mVs 1/2[Ep .a+Bp,c].V [2p,c-Ep,a]V Couple 

[CrCt-BuDlNOglPFg 20 

20 + 

0.50 

0.10 

0.18 

0.19 

Cr/Cr* 

Cr+/Cr2+ 

20 + 0.99 0.19 Cr2+/Cr3+ 

100 - 0.54 0.61 Cr/Cr+ 

100 + 0.16 0.61 Cr+ZCr̂ * 

100 + 1.05 0.57 Cr2+/cr3+ 

[Mn(t-BuDiNC)_]PF, 20 + 0.86 0.46 
J o 

20 + 2.00 0.51 

100 + 0.85 0.60 Mn'̂ /Mn̂ "'" 

100 + 1.92 0.61 Mn̂ '̂ /Mn̂ '̂  

®In CH-Cl» solution, 0.1 M Bu.NPF, supporting electrolyte. Other experimental parameters as 
defined in section II.B.7. 
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III. RESULTS AND DISCUSSION 

A. Nltrile Llgands and their Complexes 

1. General 

Before embarking upon a discussion of the multldentate nltrile 

llgands of the present research. It Is appropriate to first discuss in 

a general way the coordination behavior of nltrile llgands; two extensive 

reviews on this subject are avallable.̂ '̂̂  ̂ Nitriles are known to form 

a very large number of stable, and in most cases, well-characterized 

complexes with Lewis-acidic main-group halides (e.g. BF̂ 'NCR),̂ ^̂  

transition-metal halides (e.g. TlBr̂ 'NCR)and transition-metal salts 

112 
(e.g. [Ma(NCR)g](SbClg)2)• Without exception, the nltrile llgands 

of such complexes bind through the nitrogen lone pair of electrons to the 

metal, and infrared spectra of such complexes exhibit higher v(N=C) 

38 
frequencies than those found in the spectra of the free nltrile llgand. 

There also exists a large number of nitrile-transition metal 

complexes in which the metal is "electron-rich" by virtue of its low 

oxidation state and/or the presence of strong a-donor llgands, for 

example, (n̂ CgMegCr(CO)2(NCPh)̂ ^̂  and [Ru(NĤ )̂ (NCPh)]In these 

cases, the nltrile v(NC) absorbance(s) may appear at either higher or 

lower frequency than that of the free llgand. Decreases in v(NC) upon 

coordination may be taken as evidence of ir-donation from the metal into 

the nltrile it system, but in general, nitriles are considered to be 
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18 
poor ir-acceptors relative to CO, Isonltrlles, phosphites, and phosphlnes. 

In contrast to the complexes of the "harder" metal halldes and salts 

referred to In the last paragraph, these "electron-rich" complexes 

sometimes exhibit two v(NC) bands when more than one nitrile is bound 

to the metal, as for the cis-acetonitrile ligands of Mo(CO)2(PBû )2 

(NCCH3)2.̂ ® 

2+ 
Homoleptic nitrile complexes of the general formula [M(NCR)g] are 

n 2 115 
well-known (M = Mg, Cd, Mn, Pe, Co, Ni, Cu), ' as mentioned 

earlier. These complexes are usually quite sensitive to atmospheric 

moisture, and aside from the iron(II) complexes, do not obey the 

"eighteen-electron" rule, as do many organometallic complexes. Other 

homoleptic nitrile complexes include the cations, [Cu(NCCHg)̂ ]̂ *,̂ *̂ 

[CuCNCCHg)̂ ]*,**,!!̂  [AgCNCCHg)̂ ]*,!!* and [BdCNCCĤ )̂ ]̂ "̂ .̂ ®̂'̂ ^̂  Eighteen-

electron organometallic complexes containing three nitrile groups are 

less common, and include the air-sensitive complexes fac-M(CO) 

(NCCHg)̂ ^̂ '̂̂ ^̂  (M = Cr, Mb, W), and the more stable derivatives 

[MCCQOgCNCCHg)]]* (M = Mn, Re), [CpRuCNCCHg)]]*,!̂ ! 

[(n̂ -CgMeg)M(NCCHg)g](M = Co,̂ ^̂  Rh or Ir)̂ ^̂ , and [(n̂ -CgHg) 

Ru(llCCHg)3]Organometallic compounds containing one or two 

nitriles coordinated to a single metal center are quite common and are 

far too numerous to be listed here. One reason perhaps for the 

abundance of nitrile complexes, especially those of acetonitrlle, is that 

nitriles are often good solvents, in addition to being suitable ligands. 

Thus, reactions which open coordination sites at metal centers, such as 
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thermal or photochemical elimination of neutral ligands, hallde 

abstraction, and oxidative metal-metal bond cleavage, will often yield 

nitrile complexes when carried out in a nitrile solvent. Conversely, 

the ease with which nitriles are displaced from metal centers in non-

coordinating solvents often makes such complexes useful as precursors 

to complexes containing other, stronger ligands. 

2. Synthesis of nitrile ligands 

The dinitrile ligands DiCN-3 and DiCN-4 are prepared simply by 

displacement of bromide ion from 1,3-dibromopropane or 1,4-dibromo-

butane, respectively, by sodium 2-cyanophenoxide in hot (120°C) DMF 

solutions. Yields in these reactions (53% and 43%) are similar to that 

H 

N 
+ Br(CH2)nBr + KgCO^ 

% (CHg) 
+ 2 KBr 

+  CO^  

(I) 

obtained in the synthesis of DiCN-2 by reaction of sodium 2-cyanophenoxide 

with 1,2-dichloroethane.̂ '̂̂  ̂ Deviations from 100% yields are probably 

a result of incomplete reaction, as well as a side reaction in which HX is 

eliminated from the dihaloalkane; upon aqueous workup, the odor of 
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2-cyanophenol Is easily detected. This coupling reaction is simple in 

both concept and practice and provides easy access to the simple framework 

of these dinitrile ligands (and others in section B of this discussion). 

All three dinitrile ligands are colorless, odorless solids. The 

ligands DiCN-2 and -4 have moderate solubility in chlorinated hydrocarbons 

and low solubility in nonpolar solvents such as ether, benzene, or 

hexane. DiCN-3 has considerably greater solubility (ca. ten times) in 

chlorinated solvents, but still very low solubilities in the less polar 

solvents mentioned above. Infrared stretching frequencies of the three 

ligands at 2231-2232 cm ̂  (CHCl̂  solution) are slightly lower than that 

of benzonitrile (2235 cm ̂ ) in the same solvent. 

The TriCN ligand is synthesized by the six-step reaction sequence 

shown in Scheme I. In the first step, 2-methylacetophenone is converted 

HgBr 
TriCHj TriBr 

(BUjNlgCrgOy 

TriCN 

MeSOgCI 

TriOx 

NOH TriAI 

Scheme I 
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to its diethyl ketal by reaction with triethylorthoformate. Subsequent 

treatment with HCl(g) leads to TriCĤ , which has been previously 

97 
synthesized by this route. The yield of TriCĤ  from the ketone is 45% 

after chromatography. This cyclization of an acetophenone can be 

considered an aldol condensation, where the carbonyl and a-carbon atoms 

of the methyl ketone end up in the central phenyl ring of the product. 

In the present case, the reaction is thought to proceed via 

2-methyl-a-ethoxystyrene as an intermediatê  ̂(ct-Methoxystyrene has been 

125 
converted to 1,3,5-triphenyl benzene under similar conditions). An 

interesting side-product (ca. 0.1%) isolated from one of these reactions 

is the tetramer, 1,3,5,7-tetrakis(2-methyl phenyl)cycloctatetraene, 

which was identified by its H NMR and mass spectra. 

With the structural framework of the desired ligand established, 

a series of functional group interconversions is carried out to reach the 

desired product. Most of these reactions are straightforward and proceed 

in moderate yields. Bromination with N-Bromosuccininide gives the 

useful intermediate, TriBr in 58% yield. Further oxidation with the 

CHClg-soluble (Bû N)2 gives-the aldehyde, trlAl, in 62% yield. 

Oximation with NĤ OH-HCl in pyridine (98%), followed by dehydration with 

go 
methanesulfonyl chloride gives TriCN in 77% yield (12% overall). The 

ligand is a colorless, odorless, crystalline solid which melts at 266°C 

and can be sublimed in vacuo at temperatures near its melting point. 
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The TrlBr Intermediate deserves comment here as a possible precursor 

to other Interesting trldentate llgands. It does react with sodium azlde 

to give "TrlNg" which can be reduced with LIAIĤ  to form the trlamlne, 

1,3,5-trls[2-(amlnomethyl)phenyl]benzene ("TrlNĤ ") 13, In 42% yield. 

In preliminary Infrared studies, this llgand was found to react with 

Mn(CO)gBr to give the neutral complex Mn(C0)̂ (TrlNH2)Br [v(CO) at 2028, 

1931, 1906 cm CHgClg]. Treatment of this complex with AgPFg gave, 

along with decomposition products, an Infrared spectrum [v(CO) 2040, 

1929 cm CHgClg] consistent with the formation of a catlonlc, tris-

chelated product, [Mn(C0)g(TriNH2)This infrared spectrum can be 

compared to that of [Mn(CO)̂ (NHgCy)̂ ,̂ which exhibits bands at 2032 and 

1936 cm ̂  ̂ 26̂  Preliminary studies have also shown that a different 

iHgNHg CH2CN 

13 14 

trinitrlle llgand, 14, can be formed by substitution of the bromide ions 

in TrlBr by cyanide ion (KCN, refluxing CĤ CN). Finally, reaction of TrlBr 

127 
with LlPRg might be expected to yield a phosphorous analog of TrlNHg 

shown below (15). A structurally similar llgand, 1,3,5-trls[2-(dlfluoro-

128 
phosphlto)ethyl]benzene (16) has been shown by Nesmeyanov and coworkers 

to coordinate through all three phosphorous atoms and the phenyl ring 

simultaneously to a single chromium atom. 
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Âh 

15 16 

3. Complexes of DiCN llgands 

DiCN-3 and DlCN-4 react with Mn(CO)̂ Br over a period of hours in 

refluxing CHCl̂  or CHgClg, respectively, with the liberation of CO gas 

to yield the derivatives fac-Mn(CO) ̂ (DiCN-n)Br, (eq. II). The same type 

Ma (CO) .Br + DiCN-n > m 7CH_) + 2C0 (II) -iV " oc 

of reaction takes place between DiCN-2 and Mn(C0)gBr.̂ '̂̂  ̂ The facial 

geometry of the complexes is supported by the characteristic infrared 

pattern of three strong V(CHO) absorptions as expected for complexes 

such as these with Ĉ  symmetry. Carbonyl stretching frequencies of the 

DiCN derivatives are observed at 2042-2050, 1968-1973, and 1938-1944 cm ̂  

in CHClg, close to the values reported for fac-Mn(C0)2(CHgCN)2Br *̂ uat 

2043, 1957, and 1934 cm These DiCN complexes are also analogous to 

fac-Re(CO)̂ (Ĉ Ĥ CN)̂ Br.In the:region 2300-2200 cm the complexes 

exhibit a single, weak v(N=C) band at 2270-2272 cm ̂  assigned to the 
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coordinated nitrile group. The lack of an appreciable v(N=C) band at 

the free nitrile frequency indicates that both nitrile groups are 

coordinated to the metal, ruling out a structure such as 17. Also arguing 

N 

C !) "C c-
N N Br Br 

OC. I B̂r. I ro OCv I .NC CN̂  | CO 

I B̂r''̂  I CO OĈ  I N̂C piT \ ĈO 
C C C C 
0 ° 0 0 

17 18 

Br CO 
J/NC-v OĈ I NC CNv I CO 
Mn 

OC-' I ̂ NĈ  OĈ  I ̂ NC CN̂ 'f̂ CO 
c CO Br 
0 

19 20 

against structure 17 is the absence of a v(MnBr) doublet in the low-

frequency solid state IR spectra of the DiCN-3 and DiCN-4 derivatives. 

This doublet, however, is quite apparent in the IR spectrum of 

qn 
Mn2(C0)g(CĤ CN)̂ (n-Br)g (see Table 9). 
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While the solution infrared spectra of all three complexes are very 

similar, there are some differences between the solid state spectra of 

tbi(CO)̂ (DiCN-4)Br and those of the other two complexes. These differences 

might be due either to different molecular or crystal structures for 

the DiCN-4 derivative. In the v(CHO) region, Mn(CO)̂  (DiCN-4)Br exhibits 

"extra" shoulders at 1974 and 1896 cm for a total of five v(C=0) bands. 

For structure 18, which has symmetry, five IR-active v(C=0) bands 

(2Â  + + IBg) are predicted, but for the structure 20, 4v(C=0) are 

predicted (2 Ag + 2 By). In the low-frequency IR spectra of Mn(CO)g 

(DiCN-3)Br and Mh(C0)g(DiCN-4)Br, the latter shows eleven bands in the 

region 680-460 cm while the former shows eight bands. Whether these 

extra bands of the DiCN-4 complex are required by molecular symmetry or 

are due to simple solid state splitting cannot be determined with 

certainty, though the observation of similar solution spectra for all the 

complexes suggest that solid state splitting might be responsible. For the 

dinuclear complexes M2(C0)g(CHgCN)2 (w-Xjg, splitting in the v(C=0) region 

is seen in the solid state but not in solution (the complexes are thought 

90 
to have symmetry). It may be that solid-state splitting is 

characteristic of these dinuclear structures in general and if so, might 

argue for structure 20 for Mh(C0)g(DiCN-4)Br. On the other hand there 

are no data to suggest dinuclear structures for Mn(C0)̂ (DiCN-2)Br or 

Mn(CO)2(DiCN-3)Br. 
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In ambient room light, CHCl̂  or CHgClg solutions of Mh(CO)g(DiCN)Br 

complexes begin to precipitate a white solid within minutes of preparation. 

Concurrently, the intensity of the coordinated DiCN v(CN) peak decreases, 

as does the v(CO) band of Mn(CO)g(DiCN)Br at ca. 1940 cm~̂ . New v(CO) 

bands appear at ca. 2112 cm 2066 cm and ca. 2015 cm which might 

be assigned to a mixture of Mn(CO)̂ X (X = Br; 2146 (m), 2060 (s), 2016 (s) 

cm"̂ ) and Mn2(CO)g(y-X)2 (X = Br; 2099 (m), 2042 (s), 2011 (m), 1975 (m) 

cm ̂  Exhaustive photolysis of Ma(CO)̂ (DiCN-4)Br in CHCl̂  solution 

by direct sunlight under requires less than 20 minutes, foming DiCN-4 

as the only IR-observed product and a copious white precipitate, 

130 
presumably I&iXg (X = Br, CI) (vide infra). Bamford and coworkers have 

previously described this chemistry for Mh(C0)gL2Br complexes (L = CO, 

CHgCN). In the case of L = CĤ CN, the first step is a thermal or 

photochemical reaction, forming the dimer Mn2(C0)g(CHgCN)2(w-Br)2 

(eq. III). Subsequently, the Mn2(wBr)2 linkage is photolytically cleaved 

to produce MnBr2, CO, CĤ CN, and an unsaturated Mti(O) radical which can 

undergo further reaction with itself, liberated CO, and/or organic halides 

(eq. IV). In the case of the Mn(CO)g(DiCN-n)Br complexes in CHCl̂ , it is 

2 Mn(CO)_(nitrile)_Br > Mn„(CO),(nitrile)„(y-Br)„ + 
J I Z b Z Z (III) 

2 nitrile 

Mn,(CO),(nitrile)(v-Br), > MhBr_ + 1/2 Mn.fCO).. + 
2 6 2 2 2 10 (lY) 

2 nitrile + other products 
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possible that the Ifa(O) fragment, initially MnCCO)̂ , picks up CO from 

solution and a chlorine atom from CHCl̂ , then dimerizes to Mn2(CO)g(y-Cl)2. 

The latter is then photolyzed further in a similar cycle until all 

the manganese has precipitated out as Mn(II) salts. 

When dissolved in neat acetone, the DiCN complexes are rapidly 

decomposed to [Mn(CO)̂ (acetone)g]Br, identified by its infrared 

131 132 
spectrum, ' and free DiCN ligand. Thus, solution of these complexes 

are stable only in non-coordinating solvents, and only in the absence 

of light. 

Because of these limitations, some investigations which might more 

firmly distinguish between mono- and dinuclear structures for the pure 

Ma (CO) g (DiCN-n) Br complexes were not possible. While ̂ NMR spectra 

of certain DiNC complexes (section III.E) are useful in assigning bridged 

versus chelated structures, line broadening due to Mn(II) precluded the 

observation of suitably well-resolved spectra in these systems. 

Presumably, molecular weight determinations by vapor-pressure osmometry 

would be affected by photodecomposition as well and were not attempted. 

If indeed the DiCN ligands chelate to Ifo(I), one might expect to 

observe some chelate effect in competition experiments with monodentate 

nitriles. While it proved to be difficult to ascertain an absolute 

measure of the chelate effect in the system studied, it is possible to 

obtain a relative measure of the chelating abilities of the three DiCN 

ligands. The reaction of interest is represented in equation V. In 
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2 DICN + MN2(C0)^(CHGCN)2(N-BR)2 < > 

(V) 

2 m(CO)g(DiCN)Br + 2 CĤ CN 

chloroform solution In the dark, this equilibrium was found to be rapidly 

established. To carry out such experiments, a known amount of the 

manganese dlmer was dissolved in a standard CHCl̂  solution of the DiCN 

llgand, such that the Mn/DICN ratio was near unity. By measuring the 

absorbance of the DiCN nitrile stretching band before and after addition 

of the manganese dlmer, it was possible to observe the fraction of free 

DICN nitrile groups remaining at equilibrium. The results of these 

experiments are represented in Table 29. DlCN-3 and DlCN-4 appear to be 

Table 29. Results of competition experiments between DiCN llgands and 
Mng(CO)g(CĤ CN)2(y-Br) 

DlCN-2 DiCN-3 DlCN-4 

expt. Mn/L Ce/Co expt. Mn/L Ce/Co expt. Mn/L Ce/Co 

1 1.06 .07 1 1.10 .14 1 1.11 .11 

2 1.05 .08 2 1.05 .14 2 1.03 .14 

3 1.06 .08 3 1.01 .16 

[Mn dlmer] 
M̂n/L = 2 [DiCN]—~ ' are accurate to + 3%. 

b _ v(N=C) absorbance at equilibrium 
® ° v(N=C) absorbance initially 

[̂Mn dimer]̂  = 0.014 M. 
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nearly equal In their abilities to bind to manganese as shown by their 

similar ratios of final to initial free nitrile group concentration. 

DiCN-2, however, appears to be significantly better. Assuming the 

reaction to take place as written in equation V, these results are 

consistent with the operation of a stronger chelate effect for DiCN-2 

than either of the other ligands, as would be expected, based on entropy 

considerations discussed in Section I.C. 

In summary, there are no data which argue strongly against chelated 

structures for the pure compounds Mn(C0)g(DiCN-2)Br and Mh(C0)g(DiCN-3)Br. 

Competition studies between DiCN ligands and Mn2(C0)g(CHgCN)2(w-Br)2 

bear out the expected relationship between DiCN-2 and the other two 

ligands, namely, that DiCN-2 is a more efficient chelator. The solid 

state infrared spectrum of the DiCN-4 complex leaves some question about 

the structure of this compound, however, 

4. Complexes of the TriCN ligand 

a. Complexes with group VII carbonyls The neutral six-coordinate 

complex Mn(CO)2(TriCN)Br is formed upon reaction of TriCN and Mn(CO)̂ Br 

in refluxing chlorocarbon solvents, in much the same way that the DiCN 

complexes are prepared (eq. VI). Though the TriCN ligand is potentially 

Mn(CO)gBr + TriCN > Mn(C0)2(TriCN)Br + 2C0 (VI) 
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tridentate, the structure is certainly one in which the ligand acts as 

a bidentate ligand as shown in Figure 7. This structure is supported 

by infrared spectroscopy; a pattern of three strong v(C=0) bands at 2046, 

1972, and 1941 cm ̂  is observed in CHCl̂  solution. In the v(NEC) 

region of the spectrum, two bands are observed. The weaker, high-

frequency band (2267 cm is assigned to the coordinated groups while 

the somewhat stronger band at 2228 cm ̂  corresponds to the free nitrile 

group. 

The conversion of Mn(CO)g(TriCN)Br to [Mn(CO)g(TriCN)]̂  is carried 

out by treatment with a silver salt such as AgPF̂  (eq. VII). As the 

Mn(C0)2(TriCN)Br + AgPF̂  > [Mn(C0)2(TriCN)]PF̂  + AgBr (VII) 

coordinated bromide is removed by Aĝ , the third and uncoordinated 

nitrile group swings in to bind to the manganese, forming the tris-

chelate structure in Figure 7. As this happens, the symmetry of the 

complex increases to and accordingly the v(C=0) pattern simplifies 

to two strong bands at 2066 and 1986 cm ̂  (of Â  and E symmetry, 

respectively). In the v(N=C) region, a single band at 2268 cm ̂  is 

observed; the low frequency absorbance seen in Mn(CO)g(TriCN)Br at 

2228 cm ̂  is no longer apparent. Treatment of the cation with an 

equimolar amount of Et̂ NBr in CHgClg leads to quantitative conversion 

back to Mn(C0)2(TriCN)Br, as one nitrile group is displaced from the 

manganese center by Br . 
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The equilibrium between bis-nltrile and trls-nitrile chelated 

forms (eq. VIII), if existent, must lie far to the left, since no 

Mn(CO)̂ (TriCN)Br y > [Mn(C0)3(TriCN)]Br (VIII) 

IR bands due to [Mn(CO) ̂ (TriCN) are observed in the spectrum of 

Mn(CO)g(TrlCN)Br in solution. 

Like its DiCN analogs, MnCCO)̂ (TriCN)Br decomposes photochemically 

in non-coordinating solvents, ultimately yielding TriCN and precipitated 

manganous halides. This process appears to take place somewhat more 

slowly for the present compound, although a direct comparison of the 

rates of decomposition in the two systems has not been made. Accordingly, 

1 13 
it is possible to obtain H NMR (Table 10) and C NMR (vide infra and 

Table 11) spectra of Mn(CO)g(TriCN)Br which are not severely broadened 

by the presence of Mn(II). 

The TriCN ligand reacts with Re(CO)gBr over a 5h period in 

refluxing 1,2-dichloroethane (b.p. 85°C) to yield Re(CO)̂ (TriCN)Br 

(eq. IX). The product is initially obtained as a light yellow crystalline 

Re(CO)gBr + TriCN > Re (CO) ̂ (TriCN) Br + 2 CO (IX) 

substance, though a yellow impurity can be removed by chromatography 

to give the pure complex as colorless microcrystals. The pattern of 

v(C=0) bands in CHCl̂  solution is similar to the manganese analog (2039, 

1950, 1916 cm ̂ ), though the bands are all shifted to significantly lower 
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frequency, as Is often observed when comparing spectra of first- and 

third-row transition metals. The coordinated nitrile frequency of 

2268 cm ̂  is nearly identical to that of the manganese complex. Again, 

the intensity of the coordinated nitrile band is lower than that of 

the single free nitrile group. Unlike Mn(CO)̂ (nitrile)̂ Br complexes, 

this neutral rhenium complex is stable in solutions exposed to room 

light, making it a much easier compound to study. 

Silver ion removes coordinated bromide ion from Re(CO)̂ (TriCN)Br 

to give the cationic Ĉ  ̂complex [Re(CO)̂ (IriCN)]PFg (eq. X). This is a 

Re(CO)̂ (TriCN)Br + AgPF̂  > [Re(CO)̂ (TriCN)]PFg + AgBr (X) 

colorless crystalline complex exhibiting one V(NHC) band (2267 cm ̂ ) and 

two v(C=0) absorbances (2052, 1951 cm ̂ ) as would be expected. The 

stability of both rhenium TriCN complexes allowed the measurement of 

1 13 
well-resolved H NMR (Table 10) and C NMR (Table 11) spectra. Some 

interesting comparisons and contrasts can be pointed out in these spectra. 

The NMR spectrum of free TriCN (Table 5) includes a sharp low field 

singlet at 7.94 ppm (CD̂ CN). This signal integrates to roughly three 

protons and is assigned to the three equivalent protons residing on the 

central phenyl ring of the ligand. Expectedly, these three protons are 

the only ones within the ligand which are not split by coupling to adjacent 

ring protons. In the complex Re(CO)̂ (TriCN)Br, the NMR spectrum consists 
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of a multiplet from which the previously observed spike is absent. Upon 

removal of Br and coordination of the last nitrile moiety, the sharp 

three-proton spike reappears as a high field singlet at 7.45 ppm (CD̂ CN). 

These spectra are shown in Figure 12. The low field position of this 

resonance in the free ligand is most likely due to magnetic anisotropy 

within the nitrile and peripheral phenyl groups. Assuming a time-

averaged conformation of symmetry something like that in 21, the 

protons of interest lie in regions deshielded by a phenyl ring and a 

nitrile group. In the other limiting case, that of full chelation to 

Re(C0)2̂ , 22, the nitrile groups are no longer able to affect those 

21 22 

protons. At the same time, they are now considerably less deshielded by 

the phenyl rings and their chemical shift from TMS decreases. 



www.manaraa.com

123 

U . 

Re(CO)g L Br Re(CO)3L^ 

Figure 12. H NMR spectra of aromatic protons in TriCN (L) and its Re 
complexes in CD̂ CN solution 
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13 
Studies of the rhenium TrlCN complexes by C NMR are also 

informative (Table 11). The free TriCN ligand exhibits nine 

signals, one for each group of three symmetry-related carbon atoms (23). 

When complexed as a bldentate ligand to rhenium in Re(CO)̂ (TriCN)Br, 

fifteen signals are observed. Here, all but three of the ligand carbon 

resonances are split into two signals with a 1:2 intensity ratio. 

Furthermore, each of those with the lower intensity has a chemical 

shift which falls within 0.5 ppm of the chemical shift for the 

corresponding carbon atom in the free ligand. The other signal is 

shifted by 0.7 to 2.4 ppm from the corresponding resonance in free TriCN. 

A logical interpretation of these results is that the coordination of 

two nitrile groups leads to a relatively large change in the chemical 

shifts of the nitrile carbon atoms, four of the phenyl ring carbons 

associated with those nitrile groups, and the two central phenyl ring 

carbons bound to the complexed CgĤ CN groups. Electronic effects are 

most likely responsible for shifts within the peripheral phenyl rings (23); 

4 

23 
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carbons 4 and 6, which are meta to the NC group, have the same chemical 

shift in complexed and free rings of Re(CO)g(TriCN)Br. In the trls-

13 
chelated complex [Re(CO)g(TriCN)]PF̂ , the C NMR pattern is seen as 

another simple nine-line pattern as is required by either or 

symmetry in this complex. 

13 
The C NMR spectrum of Mn(CO)̂ (TriCN)Br was obtained, but the 

pattern of signals corresponding to C3 and C5 is not as easily 

interpreted as for the rhenium complex, and one signal in the spectrum 

cannot be explained. Thus, the assignments for C3 and C5 are still 

questionable. Other resonances, however, are readily assigned by 

comparison of the two spectra. Unfortunately, the cationic complex 

13 
[Mn(CO)g(TriCN)]PFg gave an uninterpretable C NMR spectrum, due to 

13 decomposition or the presence of impurities. Resonances of the CO 

ligands were observed as weak singlets in the three compounds investigated. 

13 
Though two CO signals are expected for the neutral complexes, it 

13 should be born in mind that room temperature C spectra of CO ligands 

bound to such quadrupolar nuclei (̂ M̂n, I = 5/2; ̂ ®̂ Re, I = 5/2; 

187 Re, I = 5/2) often show broadened signals and/or fewer CO signals 

133 134 
than expected on the basis of symmetry ' . The chemical shifts 

of the CO ligands in the manganese (219.6 ppm) and rhenium complexes 

(191.5 ppm for Re(CO)̂ (TrICN)Br; 193.9 ppm for Re(CO)̂ (TriCN)̂ ) are well 

within ranges defined by other organometalllc manganese and rhenium 
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135 complexes. The large chemical shift difference between the analogous 

manganese and rhenium complexes is a trend commonly observed as a 

135 
transition metal triad is descended. Also to be noted is the 

slight increase in chemical shift (2.4 ppm) upon gaining a positive 

charge in the rhenium system. 

b. Complexes with other metals TriCN reacts with CrClĝ THF)̂  

under anhydrous conditions to yield a lavendar solid thought to be 

CrClg(TriCN) [v(C=N) 2278 cm 2228 cm w]. This complex is analogous 

137 
to the known purple-black complexes CrClgCNCCgHg)̂  and CrClgCNCCgHg)̂ , 

which show shifts in their nitrile stretching frequencies similar to that 

in the TriCN complex. When exposed to air, the presumed CrCl̂ (TriCN) 

decomposes to form CrClg'ôHgO and free TriCN. 

Under a variety of experimental conditions, TriCN reacts with SnCl̂ . 

The observed infrared spectra of reaction products vary widely depending 

upon the reaction conditions employed, with bands at 2271 cm 

2266 cm 2255 cm~̂ , and 2228 cm ̂  having been observed. This system 

is no doubt complex because of the presence of three nitrile groups and 

the possibility of forming acid/base (A/B) adducts of the types 

1̂38,139_ no.i39_ „ (43) no.uo. 

An attempt to prepare fac-RuCl̂ (TriCN) by the reaction of TriCN 

with RuCl̂ 'xHgO in CĤ OH gave a very air-sensitive yellow product of 

unknown formulation. This result contrasts sharply with the known reaction 
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between o-tolylnltrlle and RuCl̂ 'XĤ O, which gives red, air stable 

141 
mer-RuClg (NC-tol) j under the same reaction conditions . This 

reaction was not Investigated further, however. 

B. Isonltrlle Llgands and Their Complexes 

1. General 

A great deal could be said about both the organic chemistry 

and coordination properties of Isonltrlles. However, there are a number 

of reviews on the subject which provide a strong background on this 

subject,the latest one having been published in 1980.̂ * 

146 
Isonltrlle complexes of metals have been known for well over 100 years. 

A common early method for their preparation was the alkylation of 

cyanometallates. In the last 30 years, preparative methods for isonltrlles 

have been improved̂ ^̂  and accordingly, a large number of Isonltrlle 

complexes have been synthesized by addition of isonltrlles to metal salts 

and halides, and by substitution of CO or more labile llgands from 

organometalllc complexes. 

The metal-binding properties of isonltrlles most closely resemble 

those of CO; both possess a â d̂onating lone pair localized on carbon and 

' f t  
relatively low-lying ir orbitals which can accept ir-electron density 

from otherwise non-bonding orbitals of the metal atom. In general, 

isonltrlles are somewhat better o-donors and worse ir-acceptors than the 

19 
carbon monoxide llgand. Aromatic isonltrlles are considered better 
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ir-acceptors than alkyl Isonltrlles, due to conjugation of the vertical 

* 
TT orbitals of the Isonitrlle group with ir-antlbondlng orbltals of 

147 148 
the phenyl group. ' Experimentally, this concept Is supported 

by electrochemical and spectroscopic studies. The vast majority of 

Isonitrlle complexes prepared and isolated to date are those of 

formally zero-, mono-, and divalent metals, though Isonitrlle complexes 

of monoanioniĉ ^̂  to tetravalent metalŝ ^̂ '̂ ^̂  are known. The stretching 

frequency of the coordinated isonitrlle group depends upon the metal, 

its oxidation state, and the nature of other llgands. Fundamentally, 

these parameters determine the relative importance of a-boriding vs. 

n-bonding in the complex. Because the carbon lone pair is antibondlng 

with respect to C and N, a-donation from this orbital raises the 

isonitrlle stretching frequency.Donation of electron density 

* 
into the isonitrlle ir orbitals lowers the stretching frequency. In 

practice, v(CN) may appear at higher or lower energies than that of the 

free llgand, with higher frequencies associated with greater formal 

positive charge or the presence of stronger ir-acid llgands in the complex. 

Also, where more than one v(CN) band is expected on the basis of 

symmetry (as for cis-ML̂  (CNR.) g), these bands are usually observed and 

are useful in determining the structure of the complex. 

2. Synthesis of slloxylated dilsonitrlles 

The initial Interest in ortho-siloxylated isonltrlles was to use 

them as precursors for the synthesis of macrocyclic tetradentate isonitrlle 

llgands. It was anticipated that a scheme to obtain these large llgands 
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would first entail the synthesis of a bidentate isonitrile ligand with 

an additional functional group ortho to each isonitrile. The second 

step would be that of chelating two such ligands at a square planar 

metal center, forming a template for the third step, coupling of the 

ortho-functional groups with an appropriate bifunctional bridge. 

Scheme II shows a series of reaction which yield the functionalized 

HC(OEt) 

2̂ 3 
BrCCHsJnBr 

(CHg)̂  O 

Dibenz-n 

1) BuLi 

2)CISiMe3 

(CH2)nO 

SiNC-n 

MfgSiO SiMCj 

Scheme II 
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dllsonitrlles SiNC-2 and SiNC-3. The scheme is simple in that the two 

important functional groups, -OSiMê  and -NEC, are generated in a 

single reaction. Furthermore, the whole sequence involves only four 

steps from commercially available 2-nitroresorcinol. 

In ethanol, 2-nitroresorcinol is reduced by hydrogen with a 

102 
palladium catalyst quantitatively to air-sensitive 2-aminoresorcinol. 

Treatment with triethylorthoformate and a catalytic amount of sulfuric 

1 no 
acid at 120-155°C gives 4-hydroxybenzoxazole in 76% yield. By 

coupling two 4-hydroxybenzoxazoles with either 1,2-dlbromoethane or 

1,3-dibromopropane, the "Dibenz" llgand precursors are obtained in 

yields of 41% and 63%, respectively. Though the yield is rather low 

for Dibenz-2, several grams of 4-hydroxybenzoxazole can be sublimed 

from the crude reaction product, bringing the effective yield to ca. 65%. 

152 
Schroder et al. have reported the conversion of 4,5-dlphenyloxazole 

to cis- and trans-1,2-diphenyl-2-trimethylsiloxyvinyl isonltriles, 

and by a similar reaction, the SINC llgands were prepared. At -78°C, 

butyllithium metallates the benzoxazole ring at position 2 (the CH), 

and in the next step, chlorotrimethylsilane is attacked by the Isocyano-

phenoxide tautomer to give the final products (eq. XI). Application of 

this reaction to the model systems benzoxazole and 4-hydroxybenzoxazole 

gives, as the major products, 2-trimethylslloxyphenylisocyanlde (24) 

and 2,6-bis(trimethylsiloxy)phenyllsocyanide (25), respectively, which 

were characterized by NMR and mass spectra. These simple derivatives 

might be interesting to study as llgands and multidentate llgand 

precursors. 
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The llgands SiNC-2 and SlNC-3 are obtained in overall yields of 

1 13 
10% and 24%, respectively. Analysis of the products by H or C NMR 

shows that each usually contains about a 10% impurity of the benzoxazole 

functionality due to either Incomplete reaction or hydrolysis of the 

silyl ether by adventitious water (vide infra). However, products of 

this quality were suitable for the preparation of metal complexes 

without further purification. SiNC-2 and SiNC-3 are pale yellow, 

odorless solids. As such, they react slowly with atmospheric moisture 

via hydrolysis of the silyl ether to regenerate the benzoxazole functional 

group and hexamethyldisiloxane. In CDCl̂  solution, a similar decomposition 

reaction takes place with excess CĤ OH over a period of about 8 hours, 

giving the dibenzoxazole and MeOSiMê  (Eq. XII). Thus, metal complex-

forming reactions with SiNC-2 and SiNC-3 were carried out in non-

hydroxylic solvents and in the absence of water. 

The llgands are slightly soluble in saturated hydrocarbons; 

the solubility of SiNC-3 is noticeably greater than that of SiNC-2 in 

these solvents. Both are moderately soluble in Et̂ O and Ĉ Ĥ , and are 

+ CH-,OSiMe 
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quite soluble In CHCl̂  and CHgClg. The greater solubility of SiNC-3 

noted above is parallelled in.the Dibenz precursors as well. It is 

thought that the higher yield in the foinnation of SiNC-3 vs. SiNC-2 

from the dibenzoxazoles is due in part to the greater solubilities of 

Dibenz-3 and its dianion in THF. 

Interestingly, the DiCN-2 ligand (Section III.A.2) is considerably 

less soluble than DiCN-3, just as SiNC-2 is less soluble than SiNC-3. 

It is noted that the less soluble ligands also have higher melting 

points than their more soluble analogs. This trend holds within the 

DiCN series (DiCN-2, mp 175-7°C**; DiCN-3, mp 113-115°C; DiCN-4, 

mp 151-3*C), as well as the SiNC pair (SiNC-2, mp 100-7°C; SiNC-3, 

mp 76-82°C). Thus, the melting points of closely-related ligands may 

indicate their relative solubilities. 

3. Rhodium complexes of siloxylated diisonitriles 

a. Rhodium(I) complexes The ligands SiNC-2 and SiNC-3 react 

at room temperature in benzene solution with [Rh(COD)Cl]̂  to precipitate 

the hygroscopic blue-green (SiNC-2) and yellow-green (SiNC-3) chloride 

salts, [Rĥ (SiNC)ĝ ]Cl̂ , (Eq. XIII). Metathesis with NaBPĥ  or KPF̂  in 

2 SiNC-n + l/2[Rh(C0D)Cl]2 > [Rh(SiNC-n)̂ ICl + COD (XIII) 

CHgCN/CHgClg, evaporation, extraction of the dry residue with CĤ Clg, 

and re-evaporation of the solutions gives the products [Rh(SiNC-2)2]X 
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(X = BPĥ , PFg) and [Rh(SiNC-3)2]PI'g in analytically pure form. In the 

solid state, complexes containing the ethylene-bridged ligand are deep 

blue-green while the SiNC-3 complex is green In color. 

Gray and others have extensively studied the solution behavior and 

electronic spectra of many complexes of the type [Kh(CNR)̂ ]̂  in their 

nonomerlc forms.58,105,153,154 ĥese cations usually exhibit three 

1 3 
metal-to-llgand charge transfer (MLCT) bands assigned as 

-> Za,,). \ -> (2a,g -> 2a2„) aud \ -> \ 

(Zê  —> Zagy). These transitions can be seen in part a of Figure 13, 

which shows appropriate molecular orbital diagrams adapted from those of 

Geoffroy et al.̂ ^̂  and Mann et al.̂ ^̂  Many of the known [Rh(CNR)̂ ]̂  

compounds associate through weak Rh-Rh bonding interactions in solution 

to form dlmers, and sometimes higher oligomers. These species exist in 

equilibrium with one another and the concentrations of oligomeric species 

depend upon the total rhodium concentration and the equilibrium constants 

for the system.Part b of Figure 13 shows the perturbation of the d̂ 2 

* 
(2â g) and TT ^̂ CZagy) orbitals attendant to dlmer formation. Such dlmers 

2+ 
and the obligate dlnuclear complexes such as [Rh2(CN(CH2)̂ NC)̂ ] show a 

low energy band assigned as ̂ Â  ̂—> ̂Â Ĉlâ  ̂—> Zâ )̂, a higher energy 

11 * 
band assigned as A._ —> E (d ,d —> TT „„), and sometimes a triplet 

Ig u xz yz CN 
1 3 58 component, Â  ̂—> of the latter band. Oddly, the energies of the 

1 1 
Â g —> Ê  transitions in monomers (2 ê  —> 2a2̂ ) and analogous 

* 
dlmers  ̂̂  CN"̂  are nearly the same, despite the observations 

* 
that 1) the tr orbital of initially â  ̂symmetry is significantly 
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a) Rh(CNR)^ 

la 

b) Rh2(CNR)g 

ig 
2* 

*ig 

On 

c) Rh2(CNR)g , eg mixing 

+ 2+ 
Figure 13. Molecular orbital diagrams for [Rh(CNR)̂ ] (a) and [Rhg(CNR)g] (b,c) 
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split to and aĝ  components in the dimer; 2) a transition from the 

unsplit d ,d (e ) pair to the 2a- orbital would be of much lower 
xz yz 5 Xg 

energy than in the monomer and would also be electric dipole-forbidden; 

and 3) the electric dipole-allowed transition ̂ A, —> (2e —> 2a-
Ig u g 2i 

in Figure 13b) in the dimer would be of much higher energy than in the 

corresponding monomer. These inconsistencies could be accounted for 

by allowing the d and d orbitale of the two rhodium centers to 
XZ yz 

* 
mix, just as the d̂ 2 and ir CN (aĝ ) do. This gives rise to a set of 

stabilized e and destabilized e orbitals, as shown in part c of 
u g 

Figure 13. From this configuration, the (lê  —> 2 â )̂ 

transition is fully allowed, and should now be similar in energy to the 

—> ̂E (2e —> 2a„ ) transition of the monomer. 
Ig u g 2u 

The solution structures of the SiNC complexes can now be analyzed 

in terms of their electronic spectra. [Rh(SiNC-3)_]PF, (26) has an 
u O 

•SiMe 
•SiMe 

26 
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electronic spectrum comparable to those of other [Hh(CNAr)̂ ]"*" complexes. 

In CĤ CN solution, three bands are observed: 352 nm 

11 13 
406 nm ( —> Aĝ ), and 463 nm ( Â ^̂  —> Aĝ ). The energies of 

these bands are similar to those of other [Bh(CNAr)̂ ]̂  monomers, as 

shown in Table 30. At concentrations as high as 3 x 10 ̂  M, 

+ 
[BhCSiNC-S)̂ ] shows no tendency to dimerize, as evidenced by a lack 

Table 30. Electronic absorptions of [Rh(CNAr)̂ ]̂  monomers, nm 

Compound ^̂ Ig —> u \g '"u \g —> \n 

[Rh(SiNC-3)2]"*" ® 352 b 406 463 

[RhCDiNOg]'"' 357 415 sh 427 472 

[EhCt-BuDiNOg]"'' ̂  361 413 sh 421 472 

[RhCCNPh)̂ ]"̂  335 b 411 463 

*CHgCN solution. 

N̂ot observed. 

D̂MF solution, from ref. 155. 

'̂ CHgCN solution, from ref. 56. 

of low energy bands at ca. 600 nm. Thus, even concentrated solutions 

of this complex are green in color, as Is the complex in the solid state. 

This contrasts with the blue to violet colors characteristic of 
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[Sh2(CNR)g]̂ "̂  solids.155,156 tendency of [Rh(SlNC-3)g]'̂  

to dlmerlze Is attributed to unfavorable sterlc Interactions among 

trimethylsiloxy, phenyl, and propylene units in the perhaps hypothetical 

[Rh2(SiNC-3)̂ ]̂ "̂  dimer. Steric interactions between other [Bh(CNR)̂ ]̂  

units have been shown previously to affect oligomerization behavior, 

as with tetrakis (2,4,6-tri-t-butylphenylisonitrile) rhodium(I), 

which shows no tendency to dimerize.̂ ^̂  

Acetonitrile solutions of "[Rh(SiNC-2)2lPFg" (and the BPĥ  salt) 

are blue-green in color and exhibit two visible absorption bands at 607 

and 362 nm. The low energy band at 607 nm is assigned to the —> 

(lagy —> 2â g) transition in a [Kh2(SiNC-2)̂ ]̂  ̂dlmer (see Fig. 

13c), and the higher energy band at 362 nm could be due to an ̂ Â ^̂  —> 

transition in either a dimer or monomer. There are no bands at all 

between these two, though monomer transitions of the type Aĵ  ̂—> 

1 3 
' Eu (2eg —> 2a2y) would be expected around 425 and 480 nm, as for 

[Kh(SiNC-3)2]̂  and others (Table 30). Qualitatively, it is observed that 

even very dilute solutions of the complex are a blue-green color, 

indicating that a dimeric species (X̂ ^̂  607 nm) is present. The apparent 

omnipresence of a dimeric species suggests that one of two sets of 

circumstances obtains for the complex. The first would be that the 

+ K 
equilibrium constant for the dimerization reaction 2[Rh(SiNC-2)2] <nf* 

[BhgXSiNC)̂ ]̂  ̂Is very large. The other would be that ":[Eh(SiNC-2) 

exists a dimer containing four bridging SiNC-2 ligands, as shown in 27. 

At a concentration of 5.8 x 10 ̂  M, where no "monomer" bands are observed 
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27 

(I.e. at ca. 410 and 470 nm), the maximum concentration of such a 

monomer which could avoid detection would be roughly 10 ̂  M, assuming 

an of ca. 35000. This yields a K value of ca. 6 x 10̂  M which 

is very, very large considering that [Rh(CNPh)̂ ]̂ , with its sterically 

less-demanding ligands, has a K value of roughly 35 M On this 

basis (which assumes that a [Rh(SiNC-2)2] monomer would absorb energy 

at ca. 410 and 470 nm), it is proposed that the complexes "[Rh(SiNC-2)2]X" 
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(X = PF, , BPh, ) do Indeed exist in the obligate dinuclear form as 
o 4 

shown in 27. In terms of this dinuclear structure, the dication's 

band at 362 nm is assigned as the le —> 2a- transition Ig u ° u Ig 

as shown in Figure 13c. Its e value calculated per Rhg unit is 

3 -1 -1 
36.4 X 10 M cm , comparable to e values for the same transition 

2+ 
In [Rhg(CN(CHg)̂ NC)̂ ] and similar molecules, which range from 

31.5 X 10̂  to 43.3 X 10̂  M ̂  cm The molar extinction coefficient 

for the 607 nm band calculates to ca. 4400 M ̂  cm compared to a value 

of 8500 - 12500 m"̂  cm"̂  estimated for [Rhg(CNPh)g]̂ '''.̂  ̂ It is to be 

pointed out here that [Rh2(SiNC-2)̂ ]X2 decomposes slowly in solution, 

as indicated by a decrease in the intensities of both visible bands, 

and also by a drop in the intensities of ̂  NMR signals of the samples 

in CDgClg solution with respect to an Internal standard such as CDHClg 

or added cyclohexane. The decomposition is probably due to reaction 

of the silyl ether with adventitious water (vide supra). In light of 

this decomposition, the e values given above are to be considered lower 

limits, and the actual extinction coefficients could be larger. 

An interesting question concerns the very different structures 26 

and 27 which arise from reactions of the similar llgands SiNG-3 and 

SINC-2 with [Rh(C0D)Cl]2 under nearly identical conditions. In the 

absence of concrete structural data on these two compounds, this discussion 

necessarily relies upon information made available by molecular models 

158 
and an X-ray crystallographic study of [RhCt-BuDlNCÏglBPĥ 'l.S CĤ CN. 

In the hypothetical cation [Rh(SlNC-2)2]̂ , the range of possible ring-

RhĈ  interplanar angles is more constricted than In the SiNC-3 analog. 



www.manaraa.com

141 

due to the tighter 13-membered chelate ring. In [Kh(t-BuDiNC)2]̂ , 

which also contains a 13-membered t-BuDlNC chelate ring, these angles 

range from 6° to 31°.̂ ^̂  Accordingly, steric interactions between 

facing pairs of bulky trimethylsiloxy groups in the hypothetical 

[RhCSiNC-l)̂ ]̂  chelate would certainly be greater than in the known 

cation [Rh(SiNC-3)2]̂ » Energetically, this would have several 

consequences. In terms of AH for the chelate-forming reaction, more 

energy is stored in the [Rh(SiNC-2)2]̂  structure in the form of 

van der Waal's repulsions between the crowded trimethylsilyl groups 

and/or in strain energy within the chelate rings as these groups attempt 

to avoid one another. Such interactions also may reduce the amount of 

conformational flexibility within the chelate ring and reduce AS 

for the chelate-forming reaction in [KhCSiNC-Z)̂ ]̂  vs. [Rh(SiNC-3)2]'*", 

also disfavoring the former structure. The dinuclear structure 27, 

on the other hand, would appear by molecular models to possess no 

drastic steric interactions at all between neighboring trimethylsiloxy 

groups and appears to be favored over the chelated structure. 

Infrared spectra of the square-planar rhodium(I) complexes 

lRh2(SlNC-2)̂ ]̂  ̂and [Rh(SiNC-3)2]̂  exhibit one strong v(CN) band of 

symmetry at a position ca. 30 cm ̂  higher than that observed in the 

corresponding free ligand. Increases in v(CN) upon coordination to 

positively charged metal centers are very common due to o-donation from 

the slightly C-N antibonding lone electron pair of the isocyanide carbon. 
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The values of 2160 cm ̂  and 2159 cm ̂  observed for the SlNC-2 and SiNC-3 

complexes compare closely to the value of 2160 cm ̂  reported for 

[Rh(CNPh)̂ ]̂  and are 10-20 cm ̂  higher than stretching frequenices 

reported for Rh(I) complexes of some other substituted aromatic 

isocyanides.̂  ̂ In addition to the strong band at 2160 cm each 

complex exhibits a weak shoulder at 2200 cm probably due to a weakly 

52 
allowed mode of or symmetry. Other characteristic Infrared 

bands include the strong v(SiO) absorbance of the silyl ether of the SiNC 

-1 — ligands at ca. 840 cm . In the PFg salts, this band is coincident 

with the T̂  ̂v(PF) mode of the anion. 

Proton NMR spectra of the SiNC-2 and SlNC-3 complexes are similar 

to spectra of the free ligands themselves. The single CĤ  resonance 

of the SiNC-2 ligand in [Rĥ (SiNC-2)̂ is slightly broadened relative 

2+ 
to the uncomplexed ligand. The [Rĥ (SiNC-2)̂ ] unit probably has an 

instantaneous solution structure of symmetry, since the weak Rh-Rh 

interaction should pull the Rh atoms to a bonding distance of ca. 3.3 

In this structure, the CHgCHg protons should fall into an AA'BB' spin 

system as represented for the A isomer of symmetry in M. As long 

as the conversion between forms ̂  (A) and ̂  (A) takes place on the 

time scale of several hundred Hz or faster, only a time averaged 

signal should be observed, and the single CĤ  resonance indicates that 

this is the case. 
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M M 

The methyl protons of the SiMê  group appear also as a singlet 

at 0.11 - 0.13 ppm, with the chemical shift depending slightly upon the 

solvent and counterion. No splitting would be expected, since the 

SiMê  groups are interconvertible by the operation in symmetry. 

In NMR spectra of [RhCSiNC-S)̂ ]??̂ , the OCHg signal of the propylene 

unit is found as a pseudotriplet at the same chemical shift as in the 

free ligand, while the central CĤ  multiplet is at slightly lower field 

than in SiNC-3. Winzenburg et al.̂ ^̂  have observed that the structurally 

similar [Rh(t-BuDiNC)2]̂  complexes show two separate CHg resonances 

corresponding to monomeric species and dimeric species in solution. The 

monomeric cation's CĤ  chemical shift is at roughly the same postion 

as for free t-BuDiNC, while the oligomer signal is shifted upfield. Here, 
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in the case of [Rh(SlNC-3)2]̂ , the OCHg and CHg resonances are near 

those of free SlNC-3, which supports the contention that this cation 

does not dimerize in solution. 

b. Oxidative addition reactions Oxidative addition reactions 

(Eq. XIV) and the reverse reaction, reductive elimination, are of 

L̂ M + X-Y <=> L̂ MXy (XIV) 

both practical and theoretical interest because of their importance in 

many catalytic processes. Tetrakis(isonitrile)rhodium(I) complexes 

exhibit a rich and varied oxidative addition chemistry with halogens 

and alkyl halides. In many cases, the products are of the type 

+ 159 
trans-[Rh(CNR)̂ Xï] . In some systems, Rh(II), rather than Rh(III) 

complexes result, as in the halogen oxidation of the dinuclear, 

diisocyanide-bridged complex [Rĥ (CN(CH,)̂ NC)̂ ]̂ .̂̂ ®̂  Balch and 

01mstead53'54,160 described solvent-dependent equilibria of the 

type in equation XV. 

Rh(CNR)̂ '̂  + Rh(CNR)̂ Xg'̂  , > Rh2(CNR)gX2̂ "'" (XV) 

Deep blue CHgClg solutions of [Rh2(SiNC-2)̂ ]X2 (x" = PF̂ ", BPĥ ~) 

react rapidly with added I2 to give orange solutions. Addition of 

hexane or ether gives orange solids formulated as [Rh2(SiNC-2)̂ l2]X2 

(X = PFg I BPĥ  ) (30). Infrared spectra of the isolated products 

include a single, strong v(CN) mode at 2211 cm ̂  (CH2CI2) or 2213 cm ̂  
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30 

(Nujol mull). The observed shift in the isocyanide stretching frequency 

with respect to that of the Rh(I) complex (51 cm is within the range 

of 39-55 cm ̂  expected for such diiodo-Rh(II) dimers based on other 

examples in the literature.The composition of 

[RhgCSiNC-Z)̂ !̂ ](PFg)2 supported fairly well by elemental analysis 

(Sec. II.E.4.j). The BPĥ " salt, however, gave analyses with a much lower 

carbon content than expected (43.40% found; 57.10% calc'd.). This is 

probably related to an interesting photodecomposition of [Rh2(SiNC-2)̂ l2] 

(BPĥ )̂  back to [Rh2(SiNC-2)̂ ]̂  ̂(identified by IR), and an unknown 

counterion. It seems that the counterion could be I and that the BPĥ  

ion is partially decomposed to volatile products, thus accounting for 

the low C analysis. 
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In CD̂ CN solution, both the PF̂  and BPĥ  salts of the 

2+ 1 
[Rĥ CSiNC-Z)̂ !̂ ] dication give H NMR spectra in which the ethylene 

group of the ligand appears as a complex multiplet, rather than the 

slightly broadened singlet characteristic of the Rh(I) monomer 

(Figure 14). This splitting is a result of coupling among diastereotopic 

ethylene protons in an AA'BB' pattern. The chemical shift inequivalence 

results from the fact that there are now two sets of symmetry-unrelated 

protons in the closely bonded Rh-Rh dimer as represented in Figure 14. 

Unlike the Rh(I) dimer, [Rĥ CSiNC-Z)̂ ]̂ ,̂ where the formal Rh-Rh bond 

2+ 
order is zero, [Rĥ (SiNC-2)has a formal Rh-Rh bond of order one. 

This bond must slow the inter conversion of A and A enantiomers 

sufficiently to allow the observation of the ethylene multiplet, in 

contrast to the Rh(I) dimer, for which the ethylene group appears as 

a singlet. 

The visible spectrum of [Rh2(SiNC-2)̂ l2](BPĥ )2 in CHgClg exhibits 

three prominent bands of nearly equal intensity at 365, 427, and 478 nm. 

* * 
The latter two bands may be assigned as a ->• a and dir ->• a transitions, 

respectively, by analogy with [Rh2(CN(CH2)2NC)̂ l2]̂ "*'.̂ ^̂  The absorption 

at 365 nm is very close to the transition of the Rh(I) 

2+ 
dimer [Rh2(SiNC-2)̂ ] and may be due to the presence of such, having 

been formed by the aforementioned solid state photodecomposition reaction. 

The oxidation of [Rh(SiNC-3)2]PFg by Ig in CH2CI2 solution proceeds 

differently than for the SiNC-2 derivative. The addition of 0.47 mole 

of Ig to one mole of [Rh(SiNC-3)2]̂  leads to an infrared spectrum with 

a new v(CN) band at 2231 cm ̂  and a weak shoulder at 2162 cm ̂  due to 
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I 

4.5 ppm,8 4.0 

Figure 14. Schematic representation and NMR pattern of ethylene 
protons of [Rh2(SiNC-2)̂ l2]̂  
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remaining Rh(l) starting material. Addition of 0.12 mole more of 

consumes the remaining Rh(l) compound but causes no change in the 

frequency of the new, higher frequency band. From the solution 

is isolated a compound formulated as [Rh(SiNC-3)2l2](PFg) in 37% yield. 

This is a Rh(III) product, as suggested by the rather high v(CN) value 

of 2231 cm ̂  in CHgClg (2236 cm ̂  in Nujol mull). A broad absorption 

band (e = 9000 M ̂  cm at 400 nm also is consistent with a Bh(III) 

f o r m u l a t i o n . T h e  si m p l e  ̂  NMR  . s p e c t r u m  o f  t h e  c o m p l e x  ( T a b l e  1 4 )  

suggests a mononuclear Rh(III) structure as well. The product's 

elemental analysis is consistent with the proposed composition as far 

as the iodine content is concerned (17.97% calc'd.; 17.48% found), but 

the carbon content is significantly high (39.16% calc'd.; 40.63% found). 

It can only be said at this point that the major product is 

[Rh(SiNC-3)2l2]PFg, which provides a contrast to the Rh(II) complexes 

+ 155 
formed exclusively by the reactions of halogens with [̂ (DiNC)̂ ] . 

The formation of this Rh(III) product, rather than a Rh(II) complex, is 

most likely a result of the steric bulk of the [Rh(SiNC-3)2]̂  cation 

noted earlier; the same interactions which prevent the Rh(I) complex from 

dimerizing in solution would also be expected to destabilize a Rh(II)-

Rh(II) bonded system. 

2+ 
Preliminary studies indicate the [Rh2(SiNC-2)̂ ] cation to uiidergo 

oxidative addition reactions with a number of halogen-containing molecules. 

Reaction of the BPĥ  salt with excess Brg in CH2CI2 yields a yellow-

orange compound with a solid state v(CN) value of 2214 cm~̂ . Indicative 



www.manaraa.com

149 

of a Rh(II) product. Methyl Iodide gives a green product with v(CN) 

at 2200 cm ̂  (Nujol mull). Both complexes are photosensitive, as is 

[Rh2(SiNC-2)̂ l2](BPĥ )2. The photosensitivity of the CĤ I adduct, 

however, appears to be independent of the anion (i.e. BPĥ  or PFg ). 

Other substrates were observed to react quickly (in less than 5 min) 

with the cation in CHgClg. They include (color, v(CN) of product): 

ClCHgCHgCl (yellow, 2215 cm~̂ ); CHCl̂  (yellow-green, 2210 cm"̂ ); CCl̂  

(yellow, 2215 cm ̂ ); HCl(g) (Violet —> yellow-green, 2213 cm ̂ ), and 

allyl bromide (yellow, 2205 cm~̂ ). The most surprising reactions are 

those involving CHCl̂  and CCl̂ , with which [Rh(CNR)̂ ]X complexes do not 

52 
undergo facile reactions. McCleverty and coworkers have determined 

NMR spectra for [Rh(CN-i-Pr)̂ ]̂  and [Rh(CN-p-anisyl)̂ ]* in CDCl̂ , 

apparently without reaction. Also reported was the chlorination of 

[Rh(CNCĤ )̂ ]̂  by CCl̂  to the Rh(III) product, but under the stringent 

conditions of 5 hours in refluxing CCl̂ /CHgClg (2:1), with a yield 

of 52%. In contrast, the reaction between [Rh2(SiNC-2)̂ ](BPĥ )2 and 

CCl̂ (a 40-fold excess compared to 380-fold above) took place quantitatively 

at room temperature in less than one minute. The [Rh(SiNC-3)2]̂  cation 

2+ 
reacts with CCl̂  at a rate similar to that of [BhgXSiNC-̂ )̂ ] , to form 

a Rh(III) product with a v(CN) of 2235 cm ̂  in CHgClg. The reasons for 

the high reactivity of the SiNC complexes of Rh(I) are not known at 

this time. 
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c. Attempted preparation of a macrocyclic tetraisonltrile complex 

As mentioned in Section III.B.I, it was anticipated that SiNC-2 and SiNC-3 

complexes of Hh(I) might be convertible into macrocyclic tetraisonltrile 

complexes. This goal was of interest for several reasons. First, it 

was hoped that the planarity of the macrocyclic rhodium complex would 

promote stronger metal-metal interactions, both in solution and in the 

solid state, possibly giving rise to interesting physical and chemical 

properties. Second, if a general synthetic scheme could be developed 

for such a llgand, a series of square planar tetraisonltrile complexes 

of many different metals might be obtainable. The chemistry of such 

complexes would be interesting for systems not yet known to adopt 

square-planar geometries with Isonitrile llgands. 

The macrocyclic complex whose preparation was attempted is shown 

in 31. It had been anticipated that an appropriate coupling reagent. 
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here containing the malonyl unit, might react with adjacent phenol 

oxygens in the [Rh(SiNC-2)2]̂  monomer to yield the macrocycle. 

Unfortunately, it was not realized until some time after this experimental 

work was finished that "[RhCSiNC-Z)̂ ]̂ " has a dinuclear structure 

(vide supra) and would thus have yielded dinuclear structures employing 

bridging cyclic tetradentate 32 or octadentate ligands 33. However, 

c 

C 

32 33 

the synthetic and spectroscopic techniques outlined during this work 

may be useful in further attempts to create such macrocycles. Thus, 

the results and discussion of experiments intended to give the macro-

cyclic complex 31 follow. 
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Attempts to carry out a stepwise synthesis, comprised of deprotectlon 

of the phenol group of the SINC ligand in a "[Rh(SiNC)g]̂ " cation, 

followed by coupling with a malonyl dihalide proved to be fruitless. 

1 
Treatment of [Rhg(SiNC-2)̂ ] (BPĥ )̂  with Bû NF in THF leads to rapid 

silyl ether cleavage and benzoxazole ring formation. That this reaction 

takes place is not surprising; hydrolysis of the silyl ether in the free 

ligan4 leads to benzoxazole formation. Also, it is well-known that 

coordination of isonitrile groups to transition metals can promote 

attack by many nucleophiles,̂ ^̂ '̂ ^̂  including alcohols. 

Because of this unwanted cyclization, a concerted coupling reaction 

164 
was sought. Acyl fluorides are known to condense with silyl ethers 

and this was attempted. Thus, the treatment of [Rh2(SiNC-2)̂ ](BPĥ )2 

with four molar equivalents of malonyl difluoride in CHgClg solution over 

a period of 1-2 h liberates FSiMê , identified by its characteristic 

NMR doublet.Concurrently, the ligand OSiMê  resonance decreases 

in intensity and eventually the remaining ligand signals diminish as a 

blue-green solid precipitates from solution. Monitoring of reactions 

by infrared spectroscopy reveals a decrease in the Intensity of the malonyl 

fluoride v(CO) band at 1845 cm ̂  and the growth of two new bands at 

ca. 1775 and 1740 cm No change in the position or relative intensity 

of the v(CN) band is observed. Solid state infrared spectra of the 

isolated blue-green precipitate show similarly that the isonitrile groups 

are intact and that no oxidation of the Rh(I) center has taken place; 

a single v(CN) is observed at 2158 - 2160 cm The two v(C=0) bands 
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at ca. 1780 and 1740 cm ̂  are similar in frequency to those reported 

for a number of diaryImalonate esters.In most of these molecules, 

coupling of the two v(C=0) modes through the central methylene unit is 

observed. The initially intense v(SiO) band of the silyl ether is no 

longer apparent, indicating that the reaction proceeds to completion. 

The Isolated solid is insoluble in all common solvents except DMSO. 

UV-visible spectra (C = 10 ̂  M) reveal a low energy dimer band initially 

at 622 nm which loses intensity with a t̂ i2 8 min. This 

apparent deoligomerization behavior is much like that observed for dilute 

solutions of [RhCDiNC)̂ ]̂  and [Fh(t-BuDiNC)2]̂ .̂ ^̂  Such deoligomerization 

would be consistent with the presence of weakly Rh-Rh-bound dimers of 

monomeric "[Rh(SiNC-2)2]̂ " units. However, the observed deoligomerization 

and certainly the product's low solubility could also be consistent 

with a structure in which SiNC-2 ligands had been linked randomly among 

themselves to give an extended or polymeric structure. The ̂  NMR 

spectrum of the product in DMSO-d̂  confirms the absence of the silyl 

ether functionality and shows broad resonances assignable to aromatic 

and ligand methylene hydrogens. The resonance of the malonyl CĤ  group 

expected at 3.4-3.7 ppm is unobservable, possibly being masked by Ĥ O 

in the solvent. Integration of the spectrum indicates that approximately 

35% of the expected BPĥ  is absent. Elemental analysis of the same 

sample gives values of % C and % N consistent with loss of 38% of the 

theoretical BPh, . Thus, in this reaction as in oxidative addition 
4 
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reactions (vide supra), anion variability seems to be a problem. The 

successful completion of this project would first require the investigation 

of a known mononuclear Rh(I) system such as [Rh(SiNC-3)2]̂ . The anion 

variability problem above would also require attention, in order to get 

salts of known composition. Also important would be further character­

ization of the product(s) by NMR methods, osmometry, and ideally, X-ray 

crystallography. 

4. Synthesis of t-BuDiNC 

The t-BuDiNC ligand is synthesized in a manner very similar to that 

in which the DiNC ligand was prepared.Scheme III outlines the 

synthesis. Commercially available 4-t-butylphenol is easily nitrated 

by 6 M HNÔ  to 4-t-butyl-2-nitrophenol.̂ ^̂  In a coupling step very 

much like that employed for the preparation of the DiCN ligands and the 

Dibenz precursors, the nitrophenoxide anion (generated by the action of 

K2CO3) reacts with 1,2-dibromoethane to produce t-BuDlNOg. The 

procedure used in this reaction is nearly identical to that reported 

by Cannon et al for the preparation of 1,2-bis(2-nitrophenoxy)ethane, 

though with a somewhat lower temperature and longer reaction time. 

Catalytic hydrogénation of the nitro group̂ ^̂  gives the free diamine 

in high yield. Formylation of the diamine with acetic formic 

00 170 
ahhyride ' gives the diamide, t-BuDiFor, in excellent yield. It is 

13 1 noted here that both the C and room-temperature H NMR spectra of 

t-BuDiFor (Tables 19 and 20) are complicated by the existence of 

syn - anti isomerism within the amide group.That the 
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complications are due to isomerism and not a mixture of products is 

shown by the high-temperature (85°C) NMR spectrum, in which 

separate CH and NH resonances are observed, rather than the overlapping 

AB patterns seen in the ambient temperature spectrum̂ ^̂  (Table 19). 

Dehydration of formanilides is a common route to aromatic Isocyanides, 

172 The use of a phosgene/Et̂ N mixture, as outlined by Ugi and coworkers, 

173 works considerably better than the bulky PPĥ /CCl̂  reagent used 

earlier in the syntheses of DiNC and t-BuDiNC;̂  ̂removal of excess PPĥ  

and OPPhg proved to be somewhat of a problem when using PPhg/CCl̂  in those 

syntheses. After chromatography on silica gel, t-BuDiNC is obtained 

as an odorless, colorless, air-stable crystalline solid in 67% yield (15% 

overall from 4-t-butylphenol). 

The butylated ligand is much more soluble than DiNC itself, and 

has a melting point (98-100°C) ca. 50°C lower than DiNC. This melting 

point/solubility relationship was pointed out earlier for the DiCN and 

SINC ligands as well (Section III.B.2). The v(CN) frequencies of DiNC 

and t-BuDiNC are both 2126 cm ̂  in the solid state. In CHClg solution, 

the stretching frequencies are observed at 2128 cm ̂  and 2126 cm 

_1 
respectively. These compare rather closely with the value of 2132.5 cm 

143 
reported for phenylisocyanide in CHClg solution. 

5. Complexes of DiNC and t-BuDiNC 

a. Complexes containing CO ligands A variety of substituted 

complexes of chromium, molybdenum, and tungsten having the general 

formulae M(CO), (CNR) (n = 1-3) have been prepared by reactions between 
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isonltriles and the metal hexacarbonylsamine derivatives, 

olefin derivatives,and halopentacarbonyl metallates.̂ ^̂ '̂ ^̂  

More recently, high yield syntheses from the metal carbonyl, isonitrile, 

and a trans it ion-metal catalyst (CoClg'ZHgÔ ^̂  or PdÔ ^̂ ) have been 

developed. 

The cis-disubstituted complexes Cr(CO)̂ (DiNC), Cr(CO)̂ (t-BuDiNC), 

and Mo (CO)̂ (t-BuDiNC) are most conveniently prepared by displacement 

91 
of norbornadiene from Cr(CO)̂ (norbornadiene) or Mo(CO)̂ (norbornadiene) 

(eq. XVI). The DiNC and t-BuDiNC complexes of chromium are obtained in 

>M(CO)(t-BuDiNC) + + t-BuDiNC 

72% and 46% yields, respectively, by refluxing a THF solution of the 

diisonitrile and Cr(CO)̂ (norbornadiene) for 5 or 6 h. The molybdenum 

complex cis-Mo (CO)̂ (t-BuDiNC) is obtained in 68% yield after a reaction 

time of ca. 15 min in an ether/hexane mixture at room temperature. 

The shorter reaction time and lower temperature in this case reflect 

the greater lability of Mo(CO)̂ (norbornadiene) with respect to the 

183 
chromium analog. The complex cis-Mo(CO)̂ (DiNC) has been previously 

prepared in 64% yield by M. H. Quick through the reaction of DiNC 

with cis-Mo(CO)̂ (piperidine)after six hours' reaction time at room 

temperature.̂  ̂ The present method involving Mo(CO)̂ (norbornadiene), 

which presumably could be applied to the Mo(CO)̂ (DiNC) synthesis, would 
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appear to be an improvement over that employing Mo(CO)̂ (piperidine)2 

because the required reaction time is considerably shorter, though 

Mo (CO)̂ (nor)is more difficult to prepare than Mo(C0)̂ (piperidine)2.̂ ^̂  

Complexes containing a single bridging DiNC ligand are readily 

prepared by the reaction of 1 mole of DiNC with 2 moles of M(CO)̂ (acetone), 

where M is Cr or W, generated by the addition of AgPFg to Et̂ N[M(CO)̂ 1] 

in THF/acetone solvent (eq. XVII). These reactions take place by 

2 M(CO)̂ (acetone) + DiNC > [M(C0)̂ ]2(p-DiNC) (XVII) 

displacement of the labile acetone ligand from the chromium or tungsten 

atoms, with isolated yields of 69% and 41%, respectively. 

The M(CO)̂ (L-L) and [M(C0)g]2(v-DiNC) complexes are characterized 

by their elemental analyses (Table 21), infrared (Table 22), H NMR 

13 
(Table 23), C NMR (Table 24) spectra, and mass spectra (in the 

Experimental section). The infrared spectrum of cis-Cr(CO)̂ DiNC in 

the v(CN) and v(CO) regions includes two v(CN) bands at 2142 cm ̂  

(Aĵ ) and 2091 cm ̂  (B̂ ), indicative of cis-coordination of the isonitrile 

groups. In CHClg solution, two v(CO) bands are seen at 2009 and 1932 cm 

though the lower frequency band at 1932 cm ̂  probably consists of three 

unresolved bands. In hexane solution, the expected four v(C0) bands 

are observed at 2008, 1955, 1942 and 1936 (sh) cm The hexane solution 

spectrum of cis-Cr(CO)̂ (DiNC) is similar to that of cis-Cr(CO)̂ -

(CN-p-tolyl)(cf. 2136, 2081, 2011, 1955, 1944 cm"̂ ). Infrared 
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spectra of cls-Cr(CO)̂ (t-BuDlNC) and cls-Mo(CO)̂ (t-BuDlNC) are nearly 

identical to that of cis-Cr(CO)̂ (DiNC). Both monosubstituted complexes 

[M(CO)g]g(p-DiNC) exhibit a single v(CN) band at 2146 cm ̂  and three 

v(CO) bands, observed at 2059 cm ̂  (s), 1998 cm ̂  (m, sh), and 1952 cm ̂  

(vs, br) for M = Cr. These spectra closely resemble those of Cr(CO)g-

(CN-p-tol)̂ ^̂  and Mo(CO)̂ (CN-p-anlsyl) 

Carbon-13 NMR spectra of the complexes also confirm the proposed 

13 structures. The cis-complexes each show two CO resonances of roughly 

equal intensity, one for the mutually cis CO ligands trans to isonitrile 

groups and one for the pair of mutually trans CO ligands. The mono-

13 
substituted complexes show two CO peaks in an approximate 1:4 ratio, 

the former being assigned to the single CO llgand trans to the isonitrile 

group. Chemical shifts of the carbonyl ligands range from 220 and 217 ppm 

in the Cr(CO)̂ (L-L) derivatives to 196 and 194 ppm for [W(C0)g]2(n-DiNC); 

the isonitrile carbon resonances range from 182 ppm in Cr(CO)̂ (DiNC) to 

156 ppm for [W(CO) ̂ ̂  (%i-DiNC) and are normally of very low intensity 

due to the lack of nuclear Overhauser enhancement and broadening by the 

14 
quadrupolar N nucleus. The CO and CN resonances of the chromium 

complexes are ca. 10 ppm downfield of those in the analogous molybdenum 

complex; those of [Cr(C0)g]2(y-DiNC) are ca. 20 ppm downfield of the 

isostructural W complex. Similar trends were noted for the MXCO)g(TriCN)* 

system (M = Mn, Re) and have been observed in other isonitrile derivatives 

185 
of the group VI carbonyls. 



www.manaraa.com

160 

To help establish the mononuclear nature of the cls-M(CO)̂ (L-L) 

complexes, their mass spectra were determined. In all cases, a + 1 

parent ion of weak to medium intensity is observed, corresponding to 

the molecular weight of the mononuclear complex; no peaks at higher 

m/e values are seen. Additional peaks are observed for the loss of 

up to four CO ligands as well. The detection of a + 1 parent 

ion for [Cr(CO)j]2(y-DlNC) at m/e 648 establishes it as the expected 

binuclear complex. The analogous W complex shows ions corresponding to 

[W(CO)̂ DiNC]̂  and [W(CO)g]̂ , apparently due to thermally-induced 

disproportionation during heating of the sample, and no signals 

assignable to dinuclear species. This process might be related to the 

partial decomposition of Mo (CO)̂ (CNR)g complexes to Mb(CO)̂ (CNR) and 

179 
Mo(CO)2(CNR)2 during heating in mass spectral investigations. 

It was hoped that chelating and bridged DiNC ligands could also 

be distinguished by NMR studies of the CĤ  groups in the ligand 

since such a method would provide a readily accessible evaluation of the 

ligand's binding mode. The CĤ  groups might be held in a significantly 

different chemical environment in the fairly rigid chelate than in 

the flexible bridging DiNC ligand. For the neutral Cr, Mo, and W 

complexes, as well as fac-Mh(CO)̂ (DiNC)Brit is found that the chemical 

shifts of the CHg ligand are all at slightly higher field (0.07 - 0.10 

ppm) than in free DiNC. In complexes containing the bridging DiNC 

ligand, however, the CHg chemical shifts are at the same, or slightly 

lower, field relative to free DiNC. This trend appears to be valid 

only for neutral complexes; charged complexes containing one chelating 
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DiNC or t-BuDiNC ligand, e.g. CpFe(CO) (DINC)"'',̂  ̂CpFe(CS) (DiNC)'*',̂  ̂

and CpFe(CS)(t-BuDlNC)̂  show CHg resonances at either higher or lower 

field than that of the free ligand In the same solvent. 

b. Derivatives of iron and cobalt halldes Like many isonitrlles, 

DiNC and t-BuDlNC react with a variety of transition metal halldes, 

186 
giving Isolable products in most cases. Kargol and Angelici have 

reported previously the preparation of cis- and trans-FeClnCDlNC)„. 

obtained by direct reaction between the dlisocyanide and FeClg in alcoholic 

solution. It is found that t-BuDlNC reacts with FeClg in CĤ OH at 

room temperature after several minutes' time to give orange cis-FeCl̂ -

(t-BuDiNC)2 as the only product, which is isolated from solution; 

(eq. XVIII). A small amount of the product also precipitates from the 

CH-OH Et 0 
Feci 2 + 2 t-BuDlNC —> —> cis-FeCl̂  (t-BuDlNC) „ (XVIII) 

reaction. When carried out at -10°C, the reaction yields a very small 

amount of lavendar trans-FeCl̂ Ct-BuDlNC)„ as an insoluble powder, with 

the orange cis complex being again the predominant product. These 

complexes are analogous to derivatives of monodentate isonitrlles of 

the type cis- and trans- FeCl̂ CCNR)̂ , which have been the subjects of 

187—191 
a number of investigations. The complex cls-FeCl„(t-BuDlNC)„ 

is orange in color, as is often observed for the monodentate complexes. 

In CHClg solution, v(CN) bands at 2200 w, sh, 2154 s, and 2126 s, sh 

are observed, similar to those of cis-FeCl̂ (CN-p-anisyl)̂ ^̂  ̂at 2196 w, 
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sh, 2160 vs, 2154, sh, and 2134 s; four infrared-active bands of Â (2), 

and Bg symmetry are expected. The fourth band of cls-FeCl̂ Ct-BuDlNC)p 

is most likely hidden within the broad manifold below 2160 cm 

In CDClg solution, the ̂  NMR spectrum of cis-FeCl*(t-BuDlNC)̂  

shows a multiplet for the aromatic protons, a broad hump for the CHg 

protons, and two lines of equal intensity for the t-Bu groups. No 

change in the spectrum is observed upon heating to 80°C. A broad CHg 

peak was reported for the analogous complex cls-FeCl̂ (DINC)̂  by Kargol 

X86 
and Angelici. It is due, most likely, to extensive coupling within 

the CĤ -CĤ  unit, which can be described as an ABCD spin system; each 

cis-FeCl̂ (t-BuDlNC)̂  molecule exists as either a A or A enantiomer (Figure 

15) having only symmetry and no two protons within the CH2CH2 unit 

Figure 15. Schematic representations of A- and A- cis-FeClo(t-BuDlNC) 
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are chemical-shift equivalent. Similarly, there are two Inequivalent 

sets of "inner" and "outer" t-Bu groups. The members of each pair are 

Cg-related and are labelled "a" and "b" in Figure 15. 

The initially-isolated els product is a fine orange powder, obtained 

by addition of ether to the reaction solution. Concentrated solutions 

of the product in CHCl̂  precipitate orange microcrystals having the same 

spectral characteristics as the powder. However, when this micro-

crystalline els complex is dissolved in CHCl̂  or CHgClg, purple needles 

of the trans complex begin to form within several hours, (eq. XIX). 

CHC1„ or CHLCl. 
ĉ FeClg (t-BuDlNC) ̂ (AlCl ) trans-FeCl̂ (t-BuDiNC) „ (XIX) 

crystalline 

The trans complex was also obtained in good yield after 10 days when 

a catalytic amount of AlCl̂  was added to a CĤ Clg solution of the "crude" 

(powder) els complex; Isomerization of these crude samples was not 

189 
observed otherwise. It has been suggested for other FeCl2(CNR)̂  

systems that the stable but soluble cis form undergoes ionization in 

solution to a five-coordinate cation which can isomerize to the 

metastable, insoluble trans form (eq. XX). Certainly, the addition of 

cl8-FeCl̂ (CNR)̂  ̂<—> [FeCl(CNR)̂ ]Cl <=> trans-FeCl̂ (CNR)̂  (XX) 

AlCl̂  would tend to generate this intermediate, and thus, promote the 

isomerization. It is not clear why some samples of cî FeClg(t-BuDlNC)g 

isomerize more quickly than others, however. The cls-complex was not 
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sufficiently soluble in nltromethane or acetone to determine its 

conductivity. In CHgClg solution, its conductivity was ca. 0.3 0 ̂  

cm̂  mol which is essentially negligible. Conductivity studies on 

cis-FeCl*(CN-p-tolyl)̂  in acetone and nitrobenzene showed this complex 

to undergo appreciable ionization involving ca. 50% and 13% of the 

189 
material in solution for the respective solvents. 

The complex trans-FeCl»(t-BuDlNC)„ forms long lavender needles which 

appear to be deep purple when wet with solvent. It is virtually 

insoluble in most common solvents, though an orange (cis) solution 

can be obtained by allowing a crystal of the trans complex to stand in 

CHClg for several days. The infrared spectrum of trans-FeCl̂ (t-BuDlNC)„ 

in the solid state exhibits a single, strong v(CN) peak at 2146 cm 

as observed for trans--FeCl„(CN-p-anisyl)̂  at 2144 cm a single 

band of symmetry is expected for these complexes. In the low-

frequency infrared spectrum of trans-FeCl„(t-BuDlNC)„, the v(Fe-Cl) 

absorption is assigned to a band at 338.5 cm A nearby band at 356 cm ̂  

is ruled out because of its presence in the spectrum of isostructural 

trans-CoBr̂ (t-BuDlNC)̂  (vide infra). Also, the v(Fe-Cl) mode of 

trans-FeClo(CN~p-anisyl) is observed at 324 cm The low-frequency 

Infrared spectrum of cls-FeCl„(t-BuDlNC)̂  showed only very broad bands 

and the v(FeCl) band(s) could not be assigned unambiguously in that case. 
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Dilute acetone solutions of t-BuDiNC (0.01 M) react with added 

CoBr̂ 'ôĤ O to yield a fine, light green precipitate of trans-CoBr„-

(t-BuDiNC)̂ , (eq. XXI). Much like trans-FeCl̂ (t-BuDlNC)̂ , the complex 

CoBrg'ôHgO + 2t-BuDiNC > trans-CoBr̂ (t-BuDiNC)̂  78% (XXI) 

is only sparingly soluble in common organic solvents, and is totally 

insoluble in HgO. A single, strong v(CN) band is observed in its 

solid-state infrared spectrum at 2188 cm along with a weak shoulder of 

unknown origin at 2109 cm The assigned trans stereochemistry is also 

supported by the presence of a strong band at 158 cm which is assigned 

to the IR-allowed v(Co-Br) mode of symmetry. The complex is similar 

to the previously reported trans-CoBr„(CNPh)̂ , which is also green in 

color and has a v(CN) value of 2190 cm Unlike trans-FeCl„-

(t-BuDiNC)2 which is a diamagnetic, 18-electron complex, trans-CoBr̂ -

(t-BuDiNC)̂  is a 19-electron species and is presumably paramagnetic, 

though this was not verified experimentally. The addition of 1/2 mole 

of Br2 to a suspension of one mole of trans-CoBr̂ (t-BuDiNC)̂  rapidly 

yields a deep brown solution, presumably of the 18-electron Co(III) 

complex, trans-[CoBr̂ (t-BuDiNC)̂ ]Br. Addition of one more mole of Brg 

leads to the precipitation of a deep red-brown microcrystalline substance 

which analyzes as CoBrg(t-BuDiNC)2, and is formulated as the Br̂  salt, 

trans-[CoBr2(t-BuDiNC)̂ jBr̂  (eq. XXII). Similar oxidations of Co X2(CNR)̂  

trans-CoBr̂ (t-BuDiNC)„ + 1.5 Br̂ —> trans-[CoBr̂ (t-BuDiNC)̂ 1Br̂  (XXII) 

89% 
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derivatives containing monodentate isonitriles are known, but relatively 

143 193 
little has been published on the subject. ' The complex 

[CoBr2(CNPh)̂ ]Br, prepared by bromine oxidation of CoBr̂ CCNPh)̂ , is 

193 reported to be red-violet in color, and diamagnetic. Similarly, 

trans-[CoBr̂ (t-BuDiNC)Br̂  is diamagnetic and exhibits a single v(CN) 

band at 2227 cm an increase of 39 cm ̂  from the neutral Co(II) 

derivative. The single v(CN) band supports the trans-assignment, as 

do the presence of sharp singlets for CĤ  and t-Bu protons in the NMR 

spectrum of the complex (see Table 23). That the complex is dissociated 

in solution as [CoBr̂ (t-BuDiNC)̂ and Br̂  ions is supported by its molar 

-1 2 -1 
conductance of 79.7 0 cm mol in CĤ NÔ . This value falls within 

the range of 75-95 0 ̂  cm̂  mol ̂  expected for a 1:1 conductor. 

The simple Br salt, [CoBr̂ (t-BuDiNC)g]Br, could not be isolated 

in pure form. Attempts to obtain the compound by addition of EtgO 

to Br̂ -generated solutions of [CoBr2(t-BuDiNC)2]Br led to the preferential 

precipitation of the Br̂  salt instead. Attempts to metathesize the 

Br̂  salt in an acetone/KPFg/HgO system gave a darker red-brown solid 

with v(CN) values of 2184 m, 2115 w, indicative of a Co(II) product. 

A similar result is obtained with acetone/HgO alone. The reductant in 

these cases may be Ĥ O itself, (yielding 0̂  and HBr), or the isocyanide, 

to produce HBr and an isocyanate derived from t-BuDiNC. 

The reaction between CoClg'GHgO and 2 t-BuDiNC in acetone gives a 

pale green precipitate which looks much like trans-CoBr„(t-BuDiNC)n» 

with yields ranging from 86-98%. In the solid state, the complex has a 



www.manaraa.com

167 

strong v(CN) band at 2195 cm ̂  and a weak shoulder at 2015 cm 

supporting a tentative formulation as trans-CoCl̂ (t-BuDiUC)„. An 

isostructural complex, trans-CoCl̂ (CN-2.6-xylvl)̂ , is reported to form 

194 under similar experimental conditions. Elemental analysis of several 

samples, however, showed the products to have a formulation closer to 

CoClg(t-BuDiNC)2'Ĥ O and the presence of Ĥ O in the samples is verified 

by a v(OH) band at 3240 cm ̂  (broad). This water is not removed to 

any appreciable extent by vacuum drying for 2 d at room temperature. 

Sixteen-electron complexes of rhodium and iridium are quite common, 

and are often active catalysts for organic transformations such as 

olefin hydrogénation or hydroformylation. On the other hand, stable 

16-electron cobalt complexes are rather scarce, but examples include 

Co(PMe2)2X,l*5 [Co(PMe2)̂ ]BPĥ and Co(P*2)2Cl.̂ ** It was thought that 

t-BuDiNC might be capable of stabilizing a coordinatively unsaturated 

cobalt(I) center such as [Co(t-Bu-DiNC)2]X. More reasonably, the 

stabilization of a neutral, 18-electron Co(I) center such as Co(t-BuDiNC)2-

C1 might also be postulated. Neither has an analog in monodentate 

isonitrile chemistry. Unfortunately, no evidence could be obtained 

for the existence of any unsaturated species. The following paragraphs 

describe the course of the investigation, and its final results. 

A number of coordinatively saturated, 18-electron cobalt(I) complexes 

of the general formula [Co(CNR)are known, and can be obtained by 

reactions of isocyanides with Co(II) salts in the presence of 

pyridine, Zn, or excess isocyanide.̂ ^̂  In the chemistry of 
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2+ 
t-BuDiNC, a structural analog would be [COgCt-BuDlNC)̂ ] , in which one 

t-BuDiNC ligand is terminally bound to each of two [Co(t-BuDiNC)2]̂  units. 

Reductions of CoCl2(t-BuDlNC)2*H20 with Zn/Hg or N2Ĥ *H20 in CH2CI2 

or EtOH, respectively, give deep yellow solutions from which dirty yellow 

solids are isolated. Infrared spectra of the solids show bands at 

2142-2150 s, sh and 2105-2112 vs, which are strongly suggestive of a 

[Co(CNR)structure having local symmetry (cf. [Co(CN-p-tol)g]* 

2148, 2105 cm ̂ ).̂ ^̂  Only one band would be expected for either square-

planar or tetrahedral [Co(t-BuDiNC)2]̂ , but two bands of and E 

symmetry would be consistent with a Ĉ  ̂structure such as Co(t-BuDiNC)gCl. 

Reactions between cobalt(II) salts and t-BuDiNC in the presence of a 

reducing agent appear to yield the same product as that obtained by 

reduction of CoCl2(t-BuDiNC)2*H20. As detailed in section II.E.6, the 

reaction between C0CI2*61120 and 2.5 mol of t-BuDiNC in EtOH in the 

presence of Zn dust, followed by metathesis with KPF̂ , gives a yellow 

solid with IR bands at 2150 cm ̂  s, sh and 2108 s. Elemental analysis 

supports the structure [Co2(t-BuDiNC)g](PF̂ )2. This is confirmed by 

conductivity measurements in CHgN02, which reveal a molar conductance of 

148 t2  ̂cm̂  mol ̂  at a concentration of 1.03 x 10 ̂  M. In addition, 

—3 
a study of the conductivity over the concentration range 1.03 x 10 M 

to 2.08 X 10 ̂  M yields an Onsager plot̂ ^̂  with a "B" value of 352, 

which is close to the typical value of ca. 400 for 2:1 electrolytes. 
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Because of the chlrality at each Co atom, the complex should exist 

as a mixture of up to six stereoisomers shown schematically in Figure 16. 

AA AA meso 

 ̂M M; 
axial, A axial, A axial, axial 

Figure 16. Possible stereoisomers of [COgCt-BuDiNC)̂ ] 
2+ 

The H NMR spectrum of [Cô Ct-BuDiNC)̂ 3(PFg)2 ealiibits two CHgCHg 

resonances at 4.51 and 4.15 ppm in a ratio of 4:1, respectively. The 

t-butyl group resonance also appears as two lines at 1.24 and 1.16 ppm, 

again in a ratio of approximately 4:1, respectively. These observations 

are consistent with the proposed structure(s) if the upfield CHgCHg and 

t-Bu resonances are assigned to the bridging t-BuDiNC. Regarding 

the stereochemical rigidity of the complex, it seems that at room 

temperature in solution, the t-BuDiNC ligands undergo a relatively rapid 

intramolecular exchange. Two things suggest this. First, each CHgCHg 

resonance is observed as a relatively sharp singlet, whereas a very broad 

resonance is observed for cis-FeClnft-BuDiNC), which is stereochemically 
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similar to the Co(t-BuDlNC)2 unit and Is non-fluxlonal. If 

2+ 
[COg(t-BuDlNC)g] was not fluxlonal, one would certainly expect to observe 

more complex CHg resonances due to spin-spin coupling (as with the Iron 

complex) and the presence of up to six dlastereomers. Also, It Is known 

that other pentakls (Isonltrlle) cobalt(I) complexes are stereochemlcally 

non-rlgld. For example, [Co(t-BuNC)g]PFg exhibits a temperature-dependent 

 ̂NMR spectrum consisting of a single resonance at ambient temperature and 

two resonances of unequal intensity at -30°C or below, due to intramolecular 

201 
exchange of t-BuNC ligands. Similarly, [Co(CN-p-tolyl)g]C10̂  exhibits 

198 
one methyl signal at room temperature. These observations suggest that 

the separation of the many stereoisomers of [COgCt-BuDlNC)j](PFg)2 would be 

impossible at room temperature. 

c. Nickel and copper complexes Isonltrlle complexes of zerovalent 

nickel have been known for over 30 years, having been first prepared 

202 •• 203 
by Hleber and Bockly and Klages and Monkemeyer through reactions of 

aromatic isonltrlles with Nl(CO)̂ . The products from such reactions possess 

the general formulae Nl(CO), (CNAr) (n = 1-4). Tetrakls (Isonltrlle) 
4—n n 

nickel complexes have also been obtained via the reaction of Isonltrlles 

with Ni(COD)Cp^Ni,^^^ or via equation XXIII.Zerovalent 

NH 
K̂ [Nl2(CN)g] + 4 RNC —> K2[Ni(CN)̂ ] + Ni (CNR) ̂ + 2 KCN (XXIII) 

nickel clusters such as Nî (CN-t-Bu)y, Nlg(CN-i-pr)̂ 2 snd Nî (CNCH2Ph)̂  

205 
have been obtained by reactions between Isonltrlles and N1(C0D)2; 

Nl̂ (CN-t-Bu)y has been shown to be an effective catalyst precursor for 
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oligomerlzatlon of acetylenes and dlenes, and for the hydrogénation of 

203 208 
acetylenes, nitriles, and Isonitrlles. ' In view of the often rapid 

143 209 
polymerization of isonitriles by Ni(II) salts, ' stable derivatives 

210 
of divalent nickel are rather uncommon, and include NiCl̂ CEtOH)(CN-t-Bu), 

911 219 
[Ni(CN-t-Bu)̂ ](C10̂ ),̂ ^̂  [Ni(CNMe)̂ ](PFg)2, iNiX(DMB)̂ ](PFg)̂  (X = 

CI, Br; DMB = 1,8-diisocyanomenthane)Nil2(CN-t-Bu)2̂ ^̂  and several 

others.213.2lA 

All the complexes of DiNC and t-BuDlNC discussed heretofore employ 

the diisonitrile as a bridging ligand, or as a ligand which chelates to 

a pseudooctahedral metal center to form complexes in which the C-M-C 

angle is nearly 90®. The latter mode is that for which these ligands 

were specifically designed. Molecular models have suggested that chelation 

of DiNC (or t-BuDiNC) to a pseudotetrahedral metal, where the C-M-C 

angles would be roughly 109°, is much less favorable. Indeed, space­

filling models having normal bond lengths and angles will come together 

to form a chelate ring only with great difficulty. The following studies 

with zerovalent nickel and Cu(I) (vide supra) were undertaken to determine 

whether the diisonitriles DiNC and t-BuDiNC can form chelate rings at 

tetrahedral metal centers, and if so, what effects this would have upon 

the spectroscopic and physical properties of the complexes. 

The reaction between equimolar amounts of Ni(CO)̂  and DiNC (or 

t-BuDiNC) in CHgClg solution is complete after ca. 1 h, and produces 

the products Ni(CO)̂ (DINC) or Ni(C0)2(t-BuDiNC) (eqs. XXIV, XXV). 
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Ni(CO)̂  + DINC > Ni(C0)2(DiNC) + 2 CO (XXIV) 

Ni(CO)̂  + t-BuDlNC > Ni(C0)2(t-BuDlNC) + 2 CO (XXV) 

In the case of Ni(C0)2(DiNC), the product is isolated in 44% by filtering 

the precipitated product from the reaction mixture. The Ni(C0)2(t-BuDiNC) 

product is isolated in 61% yield after addition of hexane to the near-dry 

reaction residue. Both are pale yellow solids which are slightly 

air-sensitive in the solid state, and much more so in solution. The 

compositions of these two isostructural complexes are supported by 

elemental analysis. Two structures, 34 and 35, are possible. 

R 

34 

R 

35 



www.manaraa.com

173 

The mononuclear structure 34 contains the chelated DINC (or t-BuDlNC) 

llgand, while structure 35 shows the dllsonltrlles functioning as 

bridging ligands. The infrared spectra of the two complexes are 

quite similar to one another, shovring two v(CN) absorptions at 2146 and 

2092 cm ̂  (DINC complex) or 2145 and 2094 cm ̂  (t-BuDiNC complex) and 

two v(CO) bands at 2014 and 1972 or 2014 and 1975 cm ̂  in CHClg solution. 

The IR band positions of these complexes are close to those for Ni(C0)2-

(CNPh)̂  in CHClg, observed at 2146, 2095, 2018, and 1976 cm ̂  by 

Bigorgne,̂ ^̂  and at 2142, 2085, 2016, and 1963 cm ̂  by van Hecke and 

215 
Horrocks. The IR data observed for the DiNC and t-BuDiNC complexes 

are certainly consistent with their proposed formulations, but still 

cannot distinguish between structures 34 and 35. Unfortunately, both 

complexes decompose at ca. 140*C and as a result, their mass spectra 

showed no fragments which contained both Ni and the ligand. However, 

a vapor pressure osmometric study of Ni(C0)2(t-BuDiNC) in 1,2-dichloro-

ethane at concentrations of 0.01 - 0.02 M yielded an experimental 

molecular weight of 475 g mol compared wih the theoretical value of 

491.2 g mol ̂  for mononuclear Nl(C0)2(t-BuDiNC). Thus, the t-BuDiNC 

complex is certainly mononuclear in solution and by analogy, Ni(C0)2(DiNC) 

is presumed to be mononuclear as well. The positions of the CHg 

resonances in the NMR spectra of these complexes fit in with the 

trend outlined in section III.5.a for other zerovalent complexes; these 

resonances are observed at positions 0.10 and 0.12 ppm lower (i.e. toward 

higher field) than are the CH2 resonances of DiNC and t-BuDiNC, 

respectively, in the same solvents. This high field shift is consistent 
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13 
with the proposed chelate structure 34. The C NMR spectrum of 

NiCCÔ gCt-BuDiNC) clearly shows resonances assignable to coordinated CO ' 

(197.8 ppm) and the isocyano group (166.4 ppm), as well as signals 

assignable to the nine other ligand resonances (Table 24). Interestingly, 

the CO and CN resonances are at considerably higher field in Ni(C0)2-

(t-BuDiNC) than in cls-Cr(CO)̂ (t-BuDiNC) (cf. CO: 220, 217 ppm; CN: 

182 ppm), despite the fact that the v(CN) values of the two complexes 

are nearly coincident. Others have attempted to make such correlations 

13 
between v(CN) or v(CO) and the corresponding C NMR chemical shifts, 

but the nature of the metal has a large effect which is not fully 

J _ J 185 understood. 

The reaction between t-BuDiNC and Ni(CO)̂  in a 2:1 molar ratio leads 

to the formation of a yellow complex, presumably Ni(t-BuDiNC)2» in 90% 

yield, (eq. XXVI). This product is obtained also upon Na/Hg reduction 

Ni(CO)̂  + 2 t-BuDiNC > Ni(t-BuDiNC)2 + 4C0 (XXVI) 

of [Ni(t-BuDiNC)2](BF̂ )2 (vide infra) and by reaction of t-BuDiNC with 

Ni(C0)2(t-BuDiNC). In the solid state, the compound exhibits a strong, 

broad v(CN) band at 2020 cm~̂  (Figure 17). In CHClg solution, the band 

is shifted to 2040 cm ̂  and a weak shoulder of unknown origin is observed 

—1 178 
at 2160 cm" . Cotton and Zingales have reported bands for the 

monodentate analog, Ni(CNPh)̂ , at 2050 (s) and 1990 (s) cm Bigorgnê ^̂  

gives the values 2136 (w), 2045 (s), 2019 (m), and 1993 (m) cm in CHCl̂  

and 2029 (s), 2013 (s, sh), and 1988 (m, sh) cm~̂  in the solid state. 
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Figure 17. Infrared spectrum of Ni(t-BuDlNC)„ between 2300 cm ̂  and 1200 cm ̂  in Nujol mull 
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178 
According to Cotton and Zlngales the "extra" bands might arise as a 

result of distortion away from ideal symmetry, due to bending of the 

C-N-C unit. However, Cr(CNPh)̂ , for which this argument was also made, has 

been shown to have essentially linear C-N-C linkages by an X-ray 

216 
crystallographlc study, and it is debatable whether Cotton's argument 

obtains in either case. Whatever the explanation, Nift-BuDlNCOg 

has only one major v(CN) band, as would be expected for a complex having 

local symmetry. Significant distortions from toward Ĉ  ̂symmetry 

should complicate the spectrum somewhat, since four infrared-active 

v(CN) bands (2Â , B̂ , and B̂ ) are expected for molecules of Ĉ  ̂

symmetry. 

The proton NMR spectrum of NiCt-BuDiNC)̂  is very much like that of 

Ni(CO)g(t-BuDlNC) (Table 23). The ligand CHg group resonates at 4.35 ppm, 

very close to the value of 4.36 ppm for the dicarbonyl derivative. As 

with the dlcarbonyls, this relatively high-field resonance is consistent 

with the presence of chelating t-BuDlNC ligands as shown in 36. 
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Like its dicarbonyl analog, Ni(t-BuDiNC)2 decomposes thermally upon 

heating. Its decomposition point of ca. 120°C is 20°C lower than that 

of NiCCOOgCt-BuDiNC). In contrast, Ni(CNPh)̂  melts without decomposition 

203 
at 202-204*C. It may be that the strained t-BuDiNC chelate rings 

facilitate the thermal cleavage of the Ni-C bonds and open the way to 

further decomposition of the complex. The mass spectrum of the compound 

shows fragments at m/e values as high as 605, but none in the region 

of the expected molecular ion around m/e 810. The most prominent peaks 

in the mass spectrum appear to result from reaction of t-BuDiNC with 

Og to give the diisocyanate (m/e 408, v. low intensity) which loses 

fragments such as NC(-»- m/e 382, 5.2%), C0(-> m/e 364, 5.3%), and 

2̂̂ 2̂  ̂ 356, 7.0%). The base peak in the mass spectrum is at m/e 

191, probably corresponding to the fragment [CgĤ  (t-Bu)(OH)(NCO)]*. 

Elemental analysis of Ni(t-BuDiNC)2 would also be consistent with the 

presence of some oxygen in the sample, as the observed %C is somewhat 

lower than expected, vis. 69.91 obs. vs. 71.03 calc'd. Also in support 

of this idea is the known catalytic oxidation of isonitriles to isocyanates 

01 7 
by Ni(CNR)̂  and Ni(CgĤ 2)2* 

As pointed out earlier, there exist relatively few stable complexes 

containing isonitriles coordinated to divalent nickel. It seemed quite 

2+ 
possible that [Ni(t-BuDiNC)2] might be more stable toward isonitrile 

polymerization than would complexes containing monodentate isonitriles. 

The addition of solid Ni(BF̂ )2*61120 to a CĤ OH solution of t-BuDiNC 

causes the immediate precipitation of impure yellow-brown 
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[Ni(t-BuDiNC)2](BF̂ )̂  in yields of 25-40%. A similar result is obtained 

when solid t-BuDiNC is added to the Ni(II) solution, or if an EtOH 

7.86 - 7.25, m; CHg, 4.51, s; t-Bu, 1.34 s. Elemental analysis, however, 

shows the product to be impure, and the high values of carbon, hydrogen, 

and nitrogen are consistent with a formulation closer to Ni(t-BuDiNC)g 5-

(BF̂ )2. The excess ligand might be incorporated as the polymer (t-BuDiNC)̂  

or as coordinated t-BuDiNC oligomers of some kind. The presence of a 

weak, broad manifold in the IR spectrum between 1700 and 1600 cm ̂  

might be assignable to the C=N stretches of the alkylimino units resulting 

from isonitrile oligomerization. Such bands are seen in IR spectra of 

209 
polymers of isonitriles and for mononuclear complexes containing 

oligomers of t-butylisonitrile, 37 and 38, generated by the addition of 

218 
solution of (Et̂ N)2NiCl̂  is treated with an EtOH solution of t-BuDiNC 

and KPFg. The BF̂  salt has v(NC) at 2234 cm m, and 2190 cm w, 

sh in Nujol mull, and the following NMR spectrum (CD̂ CN) : ArH, 

37 38 
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CHgl or PhCOCl to Nl(CN-t-Bu)̂ .̂ ^̂  On the other hand, NMR spectra of 

2+ 
[Nl(t-BuDlNC)2] samples exhibit single resonances for the t-BuDlNC 

CHg and t-butyl protons, rather than more complicated patterns which 

would be expected If oligomers or soluble polymers of the llgand were 

present. 

It is possible to reduce [NKt-BuDlNC)̂ ] (BF̂ )g to Nl(t-BuDlNC)2 

with 1% sodium amalgam in THF solution (eq. XXVII). The reaction takes 

tNl(t-BuDiNC)2](BF̂ ) -Sâ/5S_> NKt-BuDlNÔ  + 2 NaBF̂  (XXVII) 

approximately 1 h and produces the desired compound in yields of 60-74%, 

along with a deep green Impurity which is removed from the filtered, 

dry reaction residue by extraction with EtgO. The product has spectro­

scopic properties (IR and NMR) identical to that of Nl(t-BuDlNC)g 

synthesized from Ni(CO)̂ . This reaction appears to be the first example 

of the reduction of a homoleptlc Nl(II) salt to its N1(0) analog, though 

reductions of Ni(II) salts with hydrazine in the presence Isonitriles 

have led to Ni(CNR)̂  compounds. 

Copper complexes of isonitriles form an interesting class of 

compounds. Derivatives of Cvi(I) salts exhibit a variety of stolchlometrles 

and coordination numbers, as represented by this series of stable 

complexes: Cu(RNC)Cl, CU(RNC)2C1, Cu(RNC)gCl and [Cu(RNC)̂ ]Cl where 

220 221 
R = p-tolyl, and a similar series involving p-anlsyllsonltrlle. 

Two oxidation states are available to such complexes, as in the pair 
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222 
[Cu(CN-t-Bu)̂ (H20)2l(C10̂ )2 and [Cu(CN-t-Bu)̂ ]C10̂ , though the Cu(II) 

compounds are certainly less common. In addition, Cu(I)/lsonltrile 

systems can be active catalysts for a variety of organic chemical 

142 transformations which includes the o-addition of alcohols to isonitriles, 

the cyclization of a-hydrogen-containing isonitriles with a,0-unsaturated 

223 224 
carbonyl and nitrile compounds, olefin dimerization, and the 

condensation of cyclopentadiene or indene with carbonyl compounds to 

225 
yield substituted fulvenes and alkylideneindenes. The present interest 

in derivatives of Cu(I) is not so much concerned with their reactivities 

but rather with their structures. 

94 
Displacement of the labile acetonitrile ligands from [Cu(CHgCN)̂ ]BF̂  

by two t-BuDiNC ligands takes place readily at room temperature over a 

period of 30 min, giving [Cu(t-BuDiNC)2]BF̂  in 68% yield (eq. XXVIII). 

[Cu(CH„CN),]BF. + 2 t-BuDiNC > [Cu(t-BuDiNC),]BF. 
 ̂  ̂  ̂ (XXVIII) 

+ 4 CĤ CN 

The formulation of the complex is supported by a molar conductance of 

84 cm̂  mol~̂  and by elemental analysis (Table 21). The isoelectronic 

complex [Cu(CNCHg)̂ ]BF̂  has been recently subjected to an X-ray 

crystallographic study, showing the molecule to possess tetrahedral 

226 
symmetry. By analogy, the t-BuDiNC complex is expected to have near-

tetrahedral symmetry at the Cu center. Two limiting structures of 

[Cu(t-BuDiNC)2]BF̂  would be the bis-chelated form 39 or the polymeric form 
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40. The latter would be expected to be less soluble than the mononuclear 

39 

40 

complex. In fact, the isolated complex is quite soluble in solvents such 

as CHgClg and CHCl̂ , suggesting it to be mononuclear. Its infrared 

spectra contain a single, symmetric v(CN) band at 2169 cm ̂  in CHClg 
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and 2165 cm ̂  in Nujol Mull (Figure 18), similar to the v(CN) absorption 

of the mononuclear analog [Cu(CN-p-anisyl)̂ ]PFg, at 2169 cm That 

only one v(CN) band is observed in solution indicates that 

[Cu(t-BuDiNC)g]̂  undergoes little, if any, dissociation to complexes of 

lower coordination number, and as with Ni(t-BuDiNC)2j indicates that 

there is little distortion of the local symmetry toward Comparison 

of the infrared spectra of the isoelectronic and presumably isostructural 

complexes Nl(t-BuDiNC)2 (Figure 17) and [Cu(t-BuDlNC)̂ ]BF̂  (Figure 18) 

shows several interesting trends. The frequency difference between the 

v(CN) values (2020 cm ̂  vs. 2165 cm ̂ ) in the two complexes is 145 cm 

The higher v(CN) in the Cu(I) complex reflects the greater importance 

of o-donation vs. u-acceptance in this complex relative to the zero\aient 

Ni analog. Also to be noted is the much greater integrated intensity 

of the v(CN) band in Ni(t-BuDiNC)2, as indicated qualitatively by its 

higher linear intensity with respect to other bands in the spectrum, 

and the larger band width. Reflected in the integrated intensity is the 
* 

degree of ir-backbonding from the metal to the ligand ir orbitals; from the 

intensities in these cases, it is again obvious that there is more back-

bonding in the Ni(0) complex than in the Cu(l) complex, as would be 

expected in comparing a neutral molecule to a cationic one. The 

integrated intensities of other homoleptic t-BuDiNC complexes are 

discussed in greater depth in the following section. 



www.manaraa.com

I— 

cm 

c\i 

Figure 18. Infrared spectrum of [Cu(t-BuDiNC)2̂ ^̂  ̂between 2300 cm ̂  and 1200 cm in Nujol mull 
1 Nujol mull in 1200 Figure 18 and 
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The proton NMR spectrum of [Cu(t-BuDlNC)̂ ]BF̂  in CDgClg solution 

consists of a multiplet of aromatic protons at 7.61 - 7.15 ppm, a 

sharp CHg singlet at 4.50 ppm, and a sharp t-Bu singlet at 1.30 ppm. 

That the CĤ  signal comes at lower field in this compound than in 

NiCt-BuDiNC)̂  (4.35 ppm) reflects the charge on the Cu(I) complex, much 

as the cationic chelate complexes [CpFe(CX) (L-L)]"*" (X = 0, S; L-L = 

DiNC, t-BuDiNC) show lower-field CĤ  signals than neutral chelate 

complexes (vide supra). 

d. Homoleptic six-coordinate t-BuDiNC complexes Homoleptic 

z+ 
isonitrile complexes, [M(CNR)g 7] > have received a good deal of 

attention in the recent literature. Such compounds, most notably those 

227̂ 233 
of the Cr group, exhibit interesting electrochemical, spectro-

scopiĉ ^̂ *̂ ^̂  and photochemical̂ ^̂  behavior. Hexakis(arylisonitrile) 

complexes of Cr, Mo, and W show activity as initiators of free radical 

237 polymerization of methyl methacrylate in the presence of CCl̂ , and upon 

reaction with AIR̂ , certain chromium complexes form Ziegler-Natta type 

catalysts for the production of isotactic and/or syndiotactic poly-1,2-

238 
butadienes. All told, there exists a wide variety of homoleptic six-

and seven-coordinate complexes containing metals of the V, Cr, Mn, and Fe 

groups. Table 31 includes a listing of such compounds and their methods 

of synthesis. 

As can be seen in Table 31, the group VI metals form the largest 

class of homoleptic six- and seven-coordinate isonitrile complexes. 

Variations in oxidation state, electron count, and the number and nature 

(alkyl or aryl) of the isonitriles are all factors which contribute 
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Table 31. Homoleptic six- and seven-coordinate isonitrlle complexes 

Compound Type Electron Count Mode of Synthesis Comments Reference 

[V(CNR)g] 

Cr(CNAr), 

2+ 

[Cr(CNAr)g] 

Cr(CNR). 

+,2+ 

[Cr(CNR)g] 

[Cr(CNR)̂ ] 

2+ 

2+ 

M(CNAr) 6 

15 

18 

17, 16 

18 

It 

16 

18 

18 

VClg + xcs RNC 

[V(CO)g]" + xcs RNC + PhlClg 

Cr2(0Ac)̂ - 2H2O + ArNC 

Cr(CO)g + PhNC 

Aĝ  oxidation of Cr(ArNC) 

CrgCCgHg)] + RNC 

Cr(i-pr)̂  + RNC 

CrClg + RNC 

[Cr(CNR)g]̂ '*" + RNC(neat) 

reduction of MoClg or WCl̂  

in presence of ArNC 

R=t-Bu 239, 240 

Ar=phenyl, substituted 227, 228, 241 

phenyl 

PdO catalyst required 182 

Ar=phenyl, substituted 229 

phenyl 

R=t-Bu 

R=n-Bu, Cy 

R=t-Bu, Cy 

R=t-Bu, Cy 

M=Mo, W, Ar=phenyl, 

substituted phenyl 

242 

243 

230 

230 

244, 245 

Mo(CNAr), 18 MOgCOAc)̂  + ArNC Ar=Ph 107 
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Compound Type Electron Count 

W(CNAr)g 18 

[M(CNAr)̂ ]̂ ''' 18 

[MCCNR)̂ ]̂ "*" 18 

[Mo (CNR) 18 

[W(CNR)y]̂ '*' 18 

[Mn(CNAr)g]'*' 18 

I t  I t  

[Mn(CNAr)g]̂ "'' 17 

Mode of Synthesis 

ArNC + «2(dmhp) 

ArNC + WgCmhp)̂  ̂

Aĝ  oxidation of M(CNAr)g 

N(CO)̂ (Cm)g + CNR + PhlClg 

RNC + K̂ MOgClg 

RNC + MOgCOAc)̂  

RNC + WgCmhp)̂  ̂

xcs ArNC + lAiIg 

ArNC + Mn(C0)5X 

[Mn(CNAr)g]̂  + HNÔ Cor Brg) 

d̂mhp is the anion of 2,4-dimethyl-6- hydroxypyrimidine. 

m̂hp is the anion of 2-hydroxy-6-methylpyridine. 

Comments Reference 

Ar=Ph 

Ar=Ph, M=Mo, W 

M=Mo, W, R=t-Bu, Cy 

R=Me, t-Bu, Cy 

R=t-Bu, Cy 

R=Ph, substituted Ph 

X=C1, Br, Ar=Ph, 

substituted Ph 

Ar=:Ph, substituted Ph 

246 

246 

247 

248 

249 

250 

231, 251 

147, 252, 253 
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Compound Type Electron Count Mode of Synthesis Comments Reference 

2+ 

[Mn(CNR)g]' 

[Mn(CNR)g] 

[Re (CNR) g ]• 

[Re(CNAr)g] 

[Re (CNR) 

[Fe(CNAr)g] 

[Fe(NCR)g] 

2+ 

2+ 

[Ru(CNR)g] 
2+ 

18 

17 

18 

18 

18 

18 

18 

18 

RNC + Mnig 

[Mh(CNR)g]'*' + HNÔ  

xcs RNC + Reig 

xcs ArNC + Re(CO)gBr 

RNC + Re2(0Ac)̂ Cl2 

xcs ArNC + Fe(C10̂ )2 

Aĝ [Fe(CN)g] + xcs RI 

K̂ [Fe(CN)g] + Mê SÔ  (or RX) 

K̂ [Ru(CN)g] + (CH20)2S02 

K̂ [Ru(CN)g] + (CHg)gOBF̂  

+ acetone 

R=Me, Et, Cy, Bz 

R=Me, Et, Cy, Bz 

R=Et, p-tolyl 

Ar=p-tdyl 

R=t-Bu 

Ar=p-tolyl, 2% yield 

R=Me, Et, Bz 

R̂ Me 

R= 

147, 252, 253 

147, 253, 254 

255 

256 

257, 258 

189 

259-261 

262 

263 
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to the large number of known compounds. A relatively limited number 

of manganese complexes is known, all having six (never seven) ligands 

and existing in the mono- or divalent state. While hexakis (alkyl-

isonitrile)iron(II) complexes are relatively abundant (a result of rather 

simple synthetic methodologies), only a single aromatic isonitrile 

derivative is known, and this is prepared in quite low yield from the 

reaction of neat p-tolylisonitrile with Fe(C10̂ )2. Thus, there do 

exist stable d̂ , 18-electron, homoleptic aromatic isonitrile complexes 

of Cr(0), Mn(I), and Fe(II), but no examples of either alkyl or aryl 

isonitrile analogs of Co(III) are known. The goal of the following 

research was to prepare a series of d̂  homoleptic complexes of the 

Z+ 
general formula [M(t-BuDiNC)g] for M = Cr; 2=0 through M = Co; 

Z = 3. Such a series encompasses metals in four different oxidation 

states and provides a number of Interesting comparisons in the spectro-

scopic (IR, UV-Vis, H NMR), chemical, and electrochemical properties 

within the series and with respect to known monodentate analogs. 

The first member of the series, Cr(t-BuDiNC)g, 4)., is prepared most 

conveniently by reducing a mixture of CrClg(THF)g and t-BuDiNG in THF 

solution with 1% sodium amalgam (eq. XXIX); the reaction is complete in 

CrCl̂ (THF)̂  + 3 t-BuDiNC Cr(t-BuDiNC)g + 3 NaCl (XXIX) 

30 min. After centrifugation of the blood-red solution to remove the 

NaCl by-product, the solvent is evaporated to give the analytically pure 

product in 65% (isolated)yield. Interestingly, the product can also be 

obtained, albeit in low yield (27%), by the photolysis of a solution of 
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41 

Cr(CO)g and t-BuDiNC in EtgO at 254 nm for ca. 48 h. A large amount of 

insoluble orange material is produced in this reaction as well. There 

are relatively few ligands which will form homoleptic complexes through 

the photolysis of Cr(CO)g; these include CĤ NCPFg)̂ , n-PrOPF̂ , and (MeO)g-

The "classical" synthesis of Cr(CNAr)g complexes is carried out 

by addition of an excess of isonitrile to a suspension of Cr̂ (OAc)̂  
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227 228 241 
In an alcohol solvent. ' ' While both DiNC and t-BuDiNC undergo 

rapid reactions with Crg(0Ac)̂ '2H20, no pure samples of Cr(DiNC)̂  or 

Cr(t-BuDiNC)g have been obtained by this method; these reaction mixtures 

typically contain Cr(0) and Cr(I) products, free ligand, and other Cr 

salts. Thus, the use of Cr2(OAc)̂ '2HgO appears to be far less satisfactory 

than the method employing CrCl̂ , Na/Hg, and t-BuDiNC. 

In the solid state, CrCt-BuDiNC)̂  (v(CN) 1940 cm reacts slowly 

with atmospheric oxygen to yield [Cr(t-BuDiNC)g]̂  (anion) , identified 

by its V(CN) band in the infrared spectrum at ca. 2050 cm~̂ . This 

oxidation is much more rapid in solution. The 17-electron Cr(I) complex 

[Cr(t-BuDiNC)̂ ]PF̂  can be prepared independently in 62% yield by the 

229 
method of Treichel and Essenmacher through the reaction of AgPFg with 

the zerovalent complex. Two equivalents of AgPFg produce the 16-electron 

Cr(II) species (v(CN) 2153 cm~̂ ) in high yield. Both reactions are well-

229 established for a large number of Cr(CNAr)g complexes. A species 

presumed to be the 15-electron trication, [Cr(t-BuDiNC)g]is generated 

chemically by the addition of SbCl̂  to a CHgClg solution of CrCt-BuDiNC)̂  

at -20°C.̂ ^̂  ̂ Infrared spectra of such solutions show a single v(CN) 

band at 2206 cm 

Infrared spectra of pure CrCt-BuDiNC)̂  samples in CHgClg solution 

exhibit a broad, nearly symmetrical band at 1956 cm ̂  assignable to the 

\u ̂ N̂C) mode (see Figure 19). A very weak hump at ca. 2100 cm ̂  might be 

due to a mode of disallowed symmetry; the peak at ca. 2125 cm in Figure 19 

could be due to a small amount of free t-BuDlNC. In contrast to the one 

major v(CN) band observed for Cr(t-BuDiNC)̂ , Cr(CNPh)g and related 
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Figure 19. The infrared V(CN) band of CrCt-BuDiNC)̂  in CHgClg solution 
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monodentate complexes are reported to show two or more major v(NC) bands. 

In light of the known local 0̂  symmetry of Cr(CNPh)̂  based on a recent 

216 
X-ray diffraction study, it appears that these additional bands may 

be attributable to impurities rather than significant geometric 

distortions, as proposed. 

Repeated attempts to obtain NMR spectra of Cr(t-BuDiNC)g 

in the chlorinated solvents CDClg and CDgClg failed, giving spectra 

with very broad and often multiple resonances. Two likely processes 

could be in operation. The first is simple aerobic oxidation of the 

complex; the second is a photo-promoted oxidation reaction involving 

the chlorinated solvent, as observed for Cr(CN-2,6-(i-Pr)2-CgHg)g 

(eq. XXX). The paramagnetism of the Cr(I) or other oxidized products 

CHCl,  ̂  ̂
Cr(CNR)g > [Cr(CNR)g]Cl (+ CgHgCl̂ ?) (XXX) 

in the case of Ctit-BuDiNC)̂  would be expected to perturb the 

NMR spectrum of the complex through contact shifts and possibly, 

1 13 
intermolecular electron exchange. Suitable H and C NMR are obtainable 

in CgDg solvent, however, and indicate that the six CĤ  groups (and the 

six t-butyl groups) are chemically-equivalent, as expected in this and 

similar molecules of symmetry. 

The next member of the homoleptic d̂  series is the cation 

[Mn(t-BuDiNC)g]̂ . This complex is obtained initially as its THF-

insoluble CI salt, in a reaction between Mn(CO)̂ Cl and t-BuDiNC (1:3 
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molar ratio, refluxing THF, 26 h) as shown in eq. XXXI. Metathesis with 

NĤ PFg in EtOH gives the cream̂ colored product, [Mh(t-BuDiNC)g]PFg, in 

49% yield (eq. XXXII). A similar reaction between Mh(CO)gBr and t-BuDiNC 

Mn(CO)gCl + 3 t-BuDiNC > [Mn(t-BuDiNC)g]Cl + 5 CO (XXXI) 

Mh(t-BuDiNC)̂ ]Cl + NĤ PFg > [Mn̂ t-BuDiNCiglPFg + NĤ Cl (XXXII) 

(1:3 molar ratio) gives a lower (38%) yield of [Mn(t-BuDiNC)g]Br after 

a reaction time of 76 h, suggesting that Mn(CO)̂ Cl is the starting 

material of choice for such reactions. Similar methodologies have been 

2̂ 1 2S1 
employed for the synthesis of [Mki(CNPh)g]X, ' though high yields 

231 
(>50%) are best obtained with a slight excess of PhNC. 

2+ 
A seventeen-electron dication, [Mn(t-BuDiNC)g] , is readily 

252 + 
obtainable via the HNÔ  oxidation of [Mn(t-BuDiNC) ̂] as in equation 

XXXIII. Metathesis with KPFg in water gives the deep blue product in 

3[Mn(t-BuDiNC)-l"̂  + 4HN0 > 3[Mh(t-BuDiNC)-]̂ "̂  + 3N0 " 
 ̂  ̂ (XXXIII) 

+ NO + 2H2O 

93% yield, but this product is slightly contaminated by the Mn(I) 

starting material. Reprecipitation of the sample from CHgClg in the 

presence of a drop of HNÔ  gives an analytically pure product. This 

oxidation from bki(I) to Mn(II) is accompanied by an increase in the 

v(CN) frequency from 2082 cm ̂  to 2162 cm ̂  (both in CĤ Clg solutions) 
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as would be expected. In CHCl̂  (Fig. 20) or CHgClg solution, the Mn(II) 

complex undergoes an apparent reduction over a period of 24 to 36 h. 

Spectra in CHgClg solution show the growth of a small peak at ca. 2243 cm ̂  

which is due to an isocyanate or diisocyanate of t-BuDiNC. The isocyanate 

group can be generated independently by treating a hot CHClg solution 

of t-BuDiNC with HgO and a small amount of Î ; the isocyanate 

(v(CNO) = 2243 cm as well as some isocyanide diiodide (v(CN) = 

1731 cm are both observed. Thus, it is quite possible that the 

2+ 
isonitrile is the reductant in the conversion of [Mn(t-BuDiNC)g] to 

(Mn(t-BuDiNC)g]̂ , though it is not clear what the oxide source is. Similar 

2+ 
reductions have been observed for other [Mn(CNAr)g] complexes in CHClg 

252 
solution. In the case of [Mn(CN-P-anisyl)g](PFg)2, a typical example, 

the reduction Is nearly complete within 15 min, contrasting greatly with 

the much longer time period of 24-36 h required for the full reduction of 

the t-BuDiNC complex in CHClg solution. 

The iron(II) complex, [FeCt-BuDiNC)̂ ](PFg)2, is prepared in a crude 

yield of 50% as shown in equation 2QCXIV. In the first step, both chloride 

cis-FeCl2(t-BuDiNC)2 t-BuDiNC ̂  [Fe(t-BuDiNC)3](PFg)2 (XXXIV) 

Ions are removed from cis-FeCl2(t-BuDiNC)2 by AgPFg in CH2CI2, yielding 

AgCl quantitatively. The addition of t-BuDiNC then gives a brown solution 

of the crude product, which is isolated and purified by several recrystal-

lizations. The presumed intermediate in the reaction, [Fe(t-BuDiNC)2] 

(PFg)2. is apparently quite acidic, since the odor of hydrogen fluoride 
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20. Reductive decomposition of [MhCt-BuDiNC)^](PFg)2 CHCl^ solution 
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(or PFg) can be detected when Ng gas Is blown across the reaction mixture 

and vented to the atmosphere. Also in support of the acidity of 

the intermediate is the observation that only one chloride ion 

can be removed from cis-FeCl2(t-BuDiNC)2 in the presence of aceto-

nitrile. Here, solvation of Aĝ  by CĤ CN may render it too weakly acidic 

267 
to remove the second chloride ion. Fadoa long ago claimed to have 

Isolated unreactive [Fe(CNAr)̂ ](ClÔ )̂  complexes by the reaction of 

FeCClÔ )̂  with aromatic isonitriles. A repetition of this work by 

Bonatl and Minghetti, however, failed to support those results and led 

1 AQ 
instead to the isolation of [Fe(CN-P-tolyl)g](010^)2» the only 

monodentate aromatic isonitrile analog of [Fe(t-BuDiNC)g](PFg)2. Both 

complexes are off-white or ivory in color and have similar Isonitrile 

stretching frequencies; [FeCt-BuDiNC)^](PFg)2 has a single, strong band 

at 2195 cm ̂  in Nujol mull (2194 cm ̂  in CH2CI2) and the p-tolyliso-

nitrile derivative has a band at 2190 cm ̂  in Nujol (2195 cm ̂  in 

189 
CHCl̂ ). The formulation of [Fe(t-BuDiNC)̂ ](PFg)2 is supported by 

elemental analysis, conductivity measurementŝ "(Â  = "156 0 ̂  cm̂  mol 

as well as and NMR (Tables 23 and 24). 

The last member of the d̂  homoleptic series is the complex 

[Co(t-BuDiNC)g](PFg)g. It is prepared in a reaction (eq. XXXV) similar 

1/2 Br 3 AgPF 
CoBr,(t-BuDiNC), —> [CoBr„(t-BuDiNC)„]Br —> 

to that employed for the preceding Fe(II) compound. Oxidation of 
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CoBr̂ (t-BuDlNC)̂  with 0.5 molar equivalents of Br̂  gives a homogeneous 

solution of the Co(III) derivative [CoBrg(t-BuDiNC)2]Br (as discussed 

in Section III. 5. b). Reaction of this species in CHgClg solution 

with three molar equivalents of AgPFg yields AgBr and a highly acidic 

intermediate, as in the Fe(II) reaction. Addition of t-BuDiNC forms 

the final product, which is isolated in low yield (22%) after precipitation 

from CHgClg solution with EtgO. As with FeClg(t-BuDiNC)̂ , the abstraction 

of Br from [CoBr̂ (t-BuDiNC)2]̂  by AgPF̂  is hampered by the presence 

of acetonitrile and it is necessary to carry the reaction out in a 

non-coordinating solvent such as CĤ Clg. Sacco, in 1953, reported 

attempts to remove I from [Co(CN-p-tolyl)̂ l2]I and [Co(CNBz)gI] 

193 
(010̂ )2 with AgClÔ  in tolviezie solvent mixtures. These 

reactions failed to remove the last I , however, and led to the isolation 

of [Co(CN-F-tolyl)gl](010̂ )2 and unchanged [Co(CNBz)gI](010̂ )2» 

respectively. These results suggest that I is tightly bound to the 

Co(III) center. The failure of AgClÔ  to abstract I here is not 

understood, though a possible explanation might be strong ion-pairing 

or covalent bonding (i.e. Ag-OClÔ ) between Aĝ  and ClÔ  . 

In strong support of the proposed formulation as [CoCt-BuDiNC)̂ ! 

(PF̂ )g is a molar conductance of 229 0 ̂ cm̂  mol clearly indicative 

of a 1:3 electrolyte. The high symmetry of the complex is supported 

by the observation of a single, weak v(CN) band in the infrared spectrum 

-1 1 at 2259 cm and by the H NMR spectrum, which shows sharp, well-

resolved resonances for each group of symmetry-related protons of the 

t-BuDlNC ligand (vide infra). 
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[Co(t-BuDiNC)g](PFg)g is quite sensitive to moisture and decomposes 

over a period of several hours when exposed to air. The decomposition 

is accompanied by a color change from yellow to tan, and when observed 

by IR, a decrease in the intensity of the initial, weak v(CN) band at 

—1 —1 2259 cm at the expense of a more intense band at ca. 2225 cm 

occurs. Wet solvents such as technical grade acetone decompose the 

complex immediately to give brown solutions; even with rigorous 

precautions against moisture, solutions for measurement of IR, NMR, 

UV-Vis spectra and conductivity (vide infra) usually underwent slow 

decomposition. The exact nature of the reaction with water is not known, 

though processes Involving oxidation of the isonitrile, reduction of 

Co(III), isonitrile displacement and/or hydration could be all possible. 

It is probably this reactivity toward water which causes a slight 

discrepancy between calculated and observed values of % C, H and N 

in the compound's elemental analysis (Table 21). 

The homoleptic d̂  series of complexes [M(t-BuDiNC)g]represents 

a wide range of bonding modes for the isonitrile ligand, from the electron-

rich Cr(0) complex to the previously unknown and highly acidic Co(III) 

derivative. Perhaps the most obvious comparisons which might be made 

among all these complexes are those of the isonitrile infrared stretching 

frequencies of T̂  ̂symmetry. Considering only spectra obtained in CHgClg 

solution, the v(CN) values range from 1958 cm ̂  to 2256 cm ̂  (from Cr(0) 

to Co(III)), thus spanning nearly 300 cm ̂  in energy. These values 

are plotted vs. charge in Figure 21. 
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There is no question that the low frequencies observed for the 

Cr(0) and Mn(I) complexes are due in large part to ir-donation from metal 

tgg orbitals into the tt system.Conversely, the very high 

value of v(CN) for the Co(III) derivative suggests that such back-

donation is of minor importance with respect to a-donation from the 

isonitrile to the metal. Recall that such a-donation involves a bonding 

interaction between the isonitrile C lone pair (which is antibonding 

with respect to C and N) and the metal; donation from this orbital 

strengthens the C-N bond and increases the stretching frequency. In 

fact, the value of 2256 cm ̂  in [Co(t-BuDiNC)̂ ](PF̂ )̂  appears to be 

the highest yet observed for a coordinated aromatic isonitrile, and this 

is not surprising in light of the fact that no other tricationic 

isonitrile complexes are known. Square-planar, dicationic complexes 

such as [Pt(CN-p-tolyl)̂ ]PtCl̂ ,[PtXDiNCiglPtCl̂ l̂ S and [NKt-BuDiNOg] 

(BF̂ )2 (vide supra) exhibit v(CN) values (Ê  mode) of 2248, 2238, 

and 2234 cm respectively, which are fairly close to the Co(III) 

stretching frequency. While it might be desirable to compare a more 

fundamental quantity such as the stretching force constant from one 

geometry to another, the frequencies of T̂  ̂modes in 0̂  symmetry should 

be comparable to frequencies of modes in symmetry, since the 

approximate secular equations relating the frequencies, stretching 

force constants, and interaction force constants for each case are the 

269 3+ 
same. Thus, the Co ion appears to demand more electron density 

2+ 2+ 
from each of its six isonitrile ligands than do the Pt or Ni ions 
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from each of their four ligands, based upon the infrared active 

3+ 
isonitrile stretching frequencies. The existence of the [Co(t-BuDiNC)g] 

trication, which represents an extreme in isonitrile-metal bonding, 

might be attributable to the chelate effect, which would keep the weakly-

bound t-BuDiNC isonitrile groups bound to the metal in a situation where 

monodentate arylisonitriles would dissociate. However, a reinvestigation 

of analogous monodentate systems might be necessary in order to define 

the true role of the chelate effect here. 

An examination of Figure 21 shows also that there are significant 

differences between v(CN) values for complexes of the same charge. Thus, 

v(CN) for the Mn(I) and Mn(II) complexes are higher than for the 

2+ 
corresponding Cr(I) and Cr(II) complexes; [FeCt-BuDiNC)̂ ] gives the 

highest v(CN) of the divalent complexes. This trend is related to the 

regular stabilization of metal atom d orbitals as the first transition 

series is traversed, and is due to ineffective shielding of increasing 

270 
nuclear charge. The ionization potentials of the gaseous metal 

atoms are effected in a similar way by this phenomenon, though no linear 

correlation between vCCN) and ionization potentials appears to hold. In 

terms of v(CN), a lowering of the energy of the n-bonding tĝ  orbitals 

gives rise to a weaker bonding interaction between these orbitals and 
* 

the isonitrile ir orbitals, increasing v(CN). 

The decreasing importance of ir-backbonding across the homoleptic d̂  

series is also born out by measurements of the absolute integrated 

intensities of their v(CN) bands. Values determined by measurements 
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made with an IBM IR 98 Fourier Transform spectrometer are plotted as 

a function of the total charge on the complex in Figure 22. Also included 

in Figure 22 are values for an isoelectronlc series of metal hexacarbonyls 

from V(CO)g to Mn(CO)ĝ , as determined by Noack.̂ ^̂  Though there appear 

to be no examples in the literature of integrated intensity measurements 

of coordinated isonitrlles, there are data available for a very large 

271 
number of compounds containing coordinated CO. Measurements have 

272 273 
also been made for complexes containing coordinated Ng, CS, 

- 274 13Q 27S 
CN and benzonitrile ligands, as well as for free Isonitrlles. ' 

271 276 
Theory states ' that the integrated intensity. A, of an 

infrared band is proportional to the quantity ,̂ where p is the 
Si 

molecular dipole moment and corresponds to the normal coordinate of 

interest. An approximation gives A = (|~)̂ » where r is the bond length 

of the oscillator in question. The high intensities of coordinated CO 

and CNR are due to significant charge transfer from metal dir to llgand 

is 
ir orbltals. As the C=N (or C=0) bond stretches, (i.e. as r increases) 

* * 
the energy of ir orbltals on the llgand drops and the metal dir —> ir 

bonding interaction increases. This transfers charge into the C=N 

(or C=0) group, changing its dipole moment, li. The closer the dfr 

* 
and IT orbital energies, the more charge can be transferred into the llgand 

as the bond stretches. Hence, the integrated intensity of a coordinated 

v(CO) or v(CN) absorption is, to a large extent, a measure of the metal 

electron density available to the llgand. For CO, it is proposed that 

the TT-bonding effects control the Integrated intensity to a much greater 



www.manaraa.com

o M(CO)g 

• M(t-BuDiNC)-

^ 20-

+ + + 

N> 
O 
W 

CHARGE 

Figure 22, Specific integrated intensities of v(CO) and v(CN) in d̂  CO and t-BuDiNC complexes 
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extent than do ff-bonding effects, based upon the observation of weak 

276 
v(CO) bands for CO which is a-bound to a metal or metal oxide surface. 

Thus, where CO intensities, and presumably CNR intensities, are very 

large, ir-bonding is assumed to be the major factor in determining the 

intensity. This method then, provides a way of evaluating the degree 

of TT-bonding in a CNR or CO complex more or less Independent of a-bonding 

effects; both a- and ir-bonding make large contributions to the stretching 

frequency of the bound ligand and make this parameter less suitable for 

the evaluation of a- or ir-effects alone. 

The intensity values plotted in Figure 22 are specific intensities, 

109 
as defined by Noack, and are obtained by dividing the total integrated 

intensity by the number of equivalent absorbing groups. The specific 

4 -1 
intensity for t-BuDlNC is not plotted, but has a value of 1.1 x 10 M 

cm which is very near the value of 1.29 x 10̂  M ̂  cm ̂  reported by 

34 
Glllis and Occolowitz for PhNC in CHClg solution. It is also known 

that electron-releasing substltuents on the aromatic ring, will lower 

275 
the isonitrile stretching band Intensity somewhat, and thus the 

t-BuDlNC value seems to be quite reasonable. As for the homoleptic 

[M(C0)g]̂  ̂series, the specific intensities of [N(t-BuDlNC)g]form 

a linear plot vs. charge for the Cr(0), Mn(I), and Fe(II) compounds, 

while the Co(III) complex introduces a discontinuity. Even for 

2+ 
[Fe(t-BuDlNC)̂ ] , whose specific intensity is ca. 4.2 times higher than 

that of t-BuDlNC, it could well be that ïï-backbondlng is of some, 

though minor, importance in the Fe(II)-CNR bonding scheme. The cobalt(III) 
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compound, alternatively, has a specific intensity which is about 

half that of free t-BuDlNC and here, ir-backbonding from Co(III) 

* 
to the isonitrlle ir system is probably close to non-existent. 

Proton NMR spectra of the homoleptic complexes are quite simple, 

due to the high (D̂ ) symmetry of the trls-chelates. These spectra , 

resemble those of the free ligand in that single resonances are 

observed for the CĤ  and t-butyl protons. Figure 23 shows the 300 MHz 

NMR spectrum of [FeCt-BuDiNC)̂ ](PFg)2 as an example. At 300 MHz, 

the aromatic proton signals of the l&i, Fe, and Co complexes in CDgClg 

solution can be resolved well enough to assign the chemical shift of 

each proton. At 90 MHz, these signals appear in a first-order pattern 

only for the cobalt complex, as shown in Figure 24. Also shown in 

Figure 24 is the aromatic multiplet of t-BuDlNOg in CDClg solution, 

which closely resembles the pattern of the Co(III) complex. This is 

3+ 
taken as a qualitative indication that the -NsC-Co unit is strongly 

electron-withdrawing, as is the NÔ  group. Chemical shifts of the 

three aromatic protons and the CĤ  protons for the Mn, Fe, and Co 

complexes are plotted in Figure 25. Unfortunately, Cr(t-BuDiNC)̂  

cannot be included in these comparisons, since the Ĉ D̂  solvent (the 

only solvent in which decent spectra could be obtained) causes very 

large aromatic solvent-induced shifts in the resonances in this and other 

179 
isonitrlle complexes. The CĤ  and ring protons produce gradually 

sloping curves which tend to level off toward Co(III). The other two 
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Figure 23. NMR spectrum of [Fe(t-BuDlNC)̂ ](PFg)2 (300 MHz) in CDgClg solution 
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8.0 7.0 ppm 

Figure 24, NMR spectra of aromatic protons of [MCt-BuDiNC),]̂ "̂  
in CDgClg solution and t-BuDlNOg in CDCl̂  solution 
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Figure 25. chemical shifts of CH„ and aromatic protons of 
[MCt-BuDiNC)̂ ]̂ "*" in CDgClg solution 
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aromatic protons, and (ortho and para to the isonitrile group, 

respectively) show more dramatic increases toward Co(III), especially 

That these protons shift more drastically than does the meta 

proton, might be taken as evidence that the aromatic ring is able 

to help stabilize the increasing positive charge on the metal through 

resonance interactions as shown below. The large separation of 

% 
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and in [CoCt-BuDiNC)̂ ](PFg)̂  (and in t-BuDiNÔ ) might be due to 

a number of electronic factors including strong a-inductive effects, 

a strong weighting of structure 43, or magnetic anisotropic effects 

arising from electronic currents within the isonitrile group. 

Alternatively, the lower chemical shift differences and higher field 

resonances in [Mn(t-BuDiNC)̂ ]PFg might be considered as arising from 

delocalization of electron density from the metal into the aromatic 

* * 
ring s 71 system via the ir  ̂orbital of the isonitrile group. Strong 

interactions between these orbitals are known to exist, through 

theoretical calculationŝ  ̂and experiment. 

z+ 
Electronic spectra of the homoleptic [M(t-BuDiNC)̂ ] complexes 

have been recorded and are tabulated in Table 25. Figure 26 contains 

traces of the four d̂  members of the series. Following assignments made 

by Mann et al̂ ^̂  for homoleptic phenylisonitrile complexes of Cr and 

Mn, the lowest energy bands in each compound are assigned as the 

* 
dir > IT  ̂MLCT transitions, which can be seen in the simple molecular 

orbital diagram of Figure 27. The spectrum of Cr(t-BuDiNC)g, measured 

in THF solution, shows the two lowest energy bands at 468 (sh) nm 

and 420 nm, compared with 458 (sh) nm and 394 nm, reported for Cr(CNPh)g. 

* 
The higher energy bands at 300 nm and 286 are assigned as dir > 

transitions, by analogy with Cr(CNPh)̂ , which exhibits one such band at 

310 nm.̂ ®̂  
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Figure 26. Electronic spectra of the complexes [M(t-BuDiNC) _ ]where = Cr°, Fê ,̂ 
and Co3+  ̂

Concentrations are ca. 9 x 10 ̂  M, b = 1 mm 
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Figure 27. Qualitative molecular orbital diagram for d M(CNR), molecules 
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The single band at 341 ran for [Mh(t-BuDlNC)̂ ]PF̂  is similar in 

energy to the closely-spaced bands reported for the PhNC analog at 340 and 

322 The Fe(II) complex shows two major bands at 298 nm and 258 nm, 

while the Co(III) analog has bands of slightly lower and higher energy 

at 307 ran and 255 ran. A shoulder at 247-249 nm for the Mn(I), Fe(II), 

and Co(III) complexes is thought to be attributable to an intraligand 

transition, shifted from its position of 225 nm in the free ligand. 

The steady increase in the MLCT energies from Cr(0) through 

Fe(II) is most likely due to a steady drop in dir orbital energies as 

a result of the increasing charge on the complexes, and less effective 

nuclear charge screening, as discussed earlier. The close resemblance 

of the Fe(II) and Co(III) spectra is somewhat surprising, but might 

be due in part to a drop in the isonltrile tt orbital energies through 

the inductive and/or resonance effects referred to in the discussion 

1  ̂
on H NMR. Also, the low degree of dir-i; backbonding in this complex 

would tend to not stabilize the dir orbitals, as is expected where 

moderate or strong ir-backbonding is taking place. 

The 17-electron species [Cr(t-BuDiNC)g]shows an electronic 

spectrum similar to that of its neutral, 18-electron congener, with 

blue-shifted dir > bands at 443 (sh) ran and 365 ran. Similarly, 

the MLCT bands of the 17-electron complex [Mh(t-BuDiNC)g](PF̂ )̂  are 

seen at 303 nm and 282 (sh) nm, compared to 341 nm for the 18-electron 

parent compound. Weak, low energy bands are also seen in the spectrum 
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2+ 
of [IfaCt-BuDiNC)̂ ] at 684 nm, 481 ran and 355 nm. These are thought to 

arise from transitions from the filled a-bonding orbitals into the diT 

orbitals, which have only five electrons. 

The electrochemistry of hexakis (isonitrile) chromium̂ 230,232,233 

231—233 and manganese complexes has been studied with some enthusiasm 

for the last ten years. Generally, these compounds exhibit three or 

four closely-spaced redox processes which are interesting in themselves 

and also have provided some insight into the nature of the bonding 

277 
between isonitriles and these metals. Though the complexes 

[CrCt-BuDiNO^]^"*" (Z = 0-3) and [MnCt-BuDiNO^]^"^ (Z = 1,2) have been 

generated chemically (vide supra), the investigation of such complexes 

through cyclic voltammetry was undertaken to determine if the chelating 

t-BuDiNC ligand selectively stabilizes any particular oxidation states. 

Also of interest was the comparison of these electrochemical results 

2+ 
with those in the literature. No complexes of the type [Fe(CNAr)g] 

have been investigated by cyclic voltammetry, and so the investigation 

of this complex was carried out as well. All studies were carried 

out at 25*C in CHgClg solution containing Bû NPF̂  at a concentration of 

0.1 M as the supporting electrolyte. Other details are given in 

Section II.B.7. 

The starting complex [Cr(t-BuDiNC)̂ ]PF̂  was used to study the 

interconversions of the various [Cr(t-BuDiNC)̂ ] species. The 

electrochemical data are presented in Table 28. Figure 28 shows 

the cyclic voltammogram recorded at a scan rate of 20 mVs As can be 

seen from the figure, there are three distinct waves, due to the 
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z+ 
interconversion of the four [Cr(t-BuDiNC)g] species for Z = 0-3. The 

chemical reversibility of all three processes is indicated by i ,i 
p,a/ p,c 

ratios of unity for each step. Half-wave potentials, calculated as 

1/2(E + E ), are -0.50, +0.10, and +0.99 V vs. SCE. These 
p,a p,c 

potentials can be compared with those determined by Essenmacher and 

227 
Treichel . for Cr(CN-p-anisyl)̂  under similar conditions: -0.44, 

+0.11, +0.84 V vs. SCE. The t-BuDiNC values are close to those of the CN-p-

anisyl complex for the first two processes, which correspond to the 

Cr° —> Cr̂  and Cr"*" —> Cr̂  ̂conversions, respectively. The last 

2+ 3+ 
process, Cr —> Cr , is seen to be slightly less favorable for the 

228 
t-BuDiNC case with respect to CN-p-anisyl. Bohling et al. have 

2+ 3+ 
observed a difference of 150 mV between the Cr —> Cr processes 

of [Cr(CN-o-tolyl)g]̂  ̂and [Cr(CN-p-tolyl)g]̂ "*"; oxidation of the 

CN-o-tolyl derivative is more difficult. They have tentatively 

3+ 
attributed the destabilization of [Cr(CN-o-tolyl)g] to unfavorable steric 

interactions between ortho ligand substituents. In the case of t-BuDiNC, 

a similar explanation may be applicable; it is imaginable that as the 

charge of the chelated Cr ion is increased from +2 to +3, the attendant 

decrease in its ionic radius (due to d-orbital contraction) strains the 

chelate ring, destabilizing the complex. 

Peak-to-peak separations for all three redox processes are found 

to vary with the scan rate. The separation is approximately 600 mV at 

-1 -1 100 mVs and 190 mV at 20 mVs . The system is thus characterized 
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as quasi-reversible, where the rate of electron transfer is somewhat 

278 
slow relative to the rate of potential change. Other Cr(CNAr)̂  

227 229 
complexes exhibit similar behavior. ' 

The manganese complex, [MnCt-BuDiNC)̂ ]??̂ , like other [Ma(CNR)g]̂  

23^^2.33 systems, shows only two waves, corresponding to the processes 

+ 2+ 2+ 3+ 
Mn > Mn and Mh > Ma . No reduction processes are observed 

at potentials as low as -2.0 V vs. SCE. Figure 29 presents the cyclic 

voltammogram of the complex as recorded at a scan rate of 20 mVs The 

El/2 values for the equilibria are +0.86 and ca. +2.0 V vs. SCE, though the 

exact determination of the latter value is complicated by the onset of 

solvent decomposition. As in the Cr case, the ratio of the peak heights 

+ 2+ 
is unity for the clean Ifa Mn equilibrium but the peak separations 

for both processes are large and dependent upon scan rate (see Table 

28), indicative of quasi-reversibility. The Ê yg values of +0.86 and 

+2.0 V can be compared with the values of +1.00 and +1.90 V vs. SCE 

232 
reported by Treichel and coworkers for [Mn(CNPh)g]PFg in CHgClg 

solution. Voltammetric data for [Mn(CN-p-anisyl)g]PFg, which is 

electronically similar to the t-BuDiNC complex, have only been reported in 

231 
CHgCN solution, but these data show the first oxidation of [Mn(CN-p-

anisyl)g]̂  to take place at a potential 140 mV more negative than for the 

PhNC complex. If we assume a similar difference to exist between 

[Mn(CfrPh)g]̂  and [Mn(CN-p-anisyl)g]̂  in CHgClg solution, the latter would 

be expected to show a first oxidation wave at +0.86 V vs. SCE, which is 

just where the Ê yg oxidation of [Mn(t-BuDiNC)g]̂  lies. However, the 

;)+ 3+ 
second wave, attributed to the Mn" —> Mn process, is more positive for 
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Figure 29. Cyclic voltammogram for [Mn(t-BuDlNC)̂ ]PF̂  
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2+ 
[Mn(t-BuDiNC)̂ ] than for the PhNC analog (compare +2.00 V to +1.90 V) 

and certainly would be more positive than for the CN-p-anisyl complex 

3+ 
in CHgClg solution. As for [CrCt-BuDlNC)̂ ] , these observations 

3+ 
indicate a slight destabilization of [Mn(t-BuDiNC)̂ ] with respect 

to the trivalent Mh complex containing the p-anisylisonitrile ligand. 

Unlike its isoelectronic chromium and manganese analogs, 

[Fe(t-BuDiNC)g](PFg)2 undergoes no chemically reversible redox processes 

when examined by cyclic voltammetry. Figure 30 shows traces recorded 

at scan rates of (a) 200 mVs ̂  and (b) 20 mVs ̂  with switching potentials 

of +1.5 V and -2.25 V vs. SCE. The most prominent feature in the 

voltammograms is a chemically and kinetically irreversible wave in 

the vicinity of -2 V. At 200 mVs , two oxidation waves are produced 

on the return sweep from -2.25 V, one at ca. -0.2 V, the other at 

ca. +1.2 V. A lower scan rate shifts the cathodic wave from a position 

negative of -2.25 V to -1.84 V, indicating the kinetic irreversibility 

of the process. Only a very tiny anodic wave at ca. -0.5 V is observed 

on the return sweep, indicating that the product(s) of the reduction 

2+ 
of [Fe(t-BuDiNC)g] undergoes a relatively fast decomposition. With 

switching potentials of +1.50 V and -1.25 V, no waves are observed 

at all, indicating that the weak anodic waves are due to electrochemical 

2+ 
activity of a reduction product of [Fe(t-BuDiNC)g] , and not 

2+ 
[FeCt-BuDiNC)̂ ] itself. Scans to the more positive potential of 

+2.25 V show some anodic current above +1.9 V, part of which is due 

to solvent decomposition, and a very slight cathodic wave at ca. +0.7 V, 
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as shown in part c of Figure 30. This suggests that only a small amount 

of oxidation of the complex takes place, and that this process, like 

the reduction, is irreversible. 
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IV. CONCLUSION 

This study of the coordination behavior of multidentate nitrile 

and isonltrile ligands was undertaken for several reasons. It was of 

interest to first characterize a number of pseudooctahedral chelate 

complexes, and to provide solid evidence that such structures are indeed 

capable of existence. A second area of investigation concerned other 

coordination modes, such as bridging or pseudotetrahedral chelating 

configurations, which these ligands might adopt. Finally, it was hoped 

that these ligands might form interesting complexes with unusual oxidation 

states or coordination numbers which have no analogs in the chemistry of 

the corresponding monodentate ligands. The chemical and spectroscopic 

properties of such molecules would be of Interest from several points 

of view. 

The bidentate nitrile ligands DiCN-3 and DiCN-4 are prepared in a 

manner identical to that previously reported̂ '̂̂  ̂for the synthesis of 

DlCN-2. All three ligands react with Mn(CO)̂ Br to afford complexes of 

the type Mn(CO)g(DiCN-n)Br. Where n = 2 and 3, the complexes appear 

to be mononuclear, and employ the DiCN-n ligands in their chelated forms. 

The structure of Mn(C0)̂ (DiCN-4)Br remains questionable; the llgand 

might be either chelating or bridging. Competition experiments between 

the DiCN ligands and CĤ CN in the system Mn2(C0)g(CHgCN)2(p-Br)2 show 

that DiCN-2 is a more efficient chelating agent than either DiCN-3 or 

DiCN-4. The DICN ligands appear to constitute the first examples of 



www.manaraa.com

223 

organodlnltriles capable of chelating to a single metal center through 

the nitrogen lone pair. Further studies with the DICN llgands would 

be useful In the determination of a quantitative measure of the chelate 

effect for these and llgands of similar structure. 

The trldentate nltrlle llgand, TrlCN, Is synthesized In six steps 

from 2-methylacetophenone In an overall yield of 12%. This llgand 

functions as either a bidentate llgand, as in M(CO)g(TriCN)Br (M = Mn 

or Re), or as a trldentate llgand, as in [M(CO)̂ (TrlCN)(M = Mh or Re). 

1 13 
The rhenium complexes are fully characterized by H and C NMR spectrom­

etry. Both methods distinguish between bidentate and trldentate binding 

modes of TrlCN. 

The bidentate isonltrlle llgands SiNC-2 and SiNC-3 are synthesized 

in yields of 10% and 24%, respectively, from 2-nitroresorclnol. It was 

expected that these llgands would form 13- and 14-membered chelate rings, 

respectively, in reactions with [Rh(COD)Cll̂ . However, the SiNC-2 llgand 

2+ 
affords a dinuclear dicatlon, [Rh2(SiNC-2)̂ ] , which contains bridging 

SiNC-2 llgands. SiNC-3 yields the mononuclear cation, [Rh(SiNC-3)2]̂ . 

Sterlc interactions between bulky -OSlMê  groups are thought to preclude 

the formation of [Rh(SiNC-2)2]̂ , and may also prevent the oligomerlzatlon 

of [Rh(SlNC-3)2]̂  in solution and the solid state. Both Rh complexes 

react very rapidly with halogen-containing substrates to give oxidative-

addition products. 
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The synthesis of a macrocyclic tetraisonitrile complex of Rh(I) was 

not achieved when [Rh2(SiNC-2)̂ ](BPĥ )2 was treated with malonyl fluoride. 

However, mononuclear [Rh(SiNC-3)2]̂  might be a promising starting material 

for the preparation of a macrocyclic complex. 

An improved synthesis of the diisonitrile ligand t-BuDiNC is reported. 

This ligand and the non-butylated molecule, DiNC,̂ '̂̂  ̂are seen to be 

capable of chelation at pseudooctahedral metal sites, as in Cr(CO)̂ (L-L), 

or at psuedotetrahedral sites, as in Ni(C0)2(L-L). In certain cases, 

these ligands will bridge between two metals, as in [Cr(C0)g]2(M-DiNC) and 

{[Co(t-BuDiNC)2]2(H-t-BuDiNC)}(BF̂ )g. Homoleptic d̂  complexes, 

[M(t-BuDiNC)g]̂  ̂ = Cr°, Mn̂ , Fê ,̂ and Cô )̂ , have also been 

prepared. The Co(III) complex has no known analogs in isonitrile 

chemistry, while only one other homoleptic Fe(II) complex containing 

aromatic isonitriles is known. Spectroscopic investigations of this 

series of compounds show that there are large variations in the degree 

of dir-TT back-bonding; such bonding is quite important for Cr° and 

+ 3+ 
Mn , but is essentially nonexistent for Co 

Thus, the multidentate ligands of the present research have shown 

themselves to possess rather rich coordination chemistries. While there 

appears to be no difficulty associated with the formation of chelate 

complexes in "normal" oxidation states and geometries, many reactions 

intended to form more unusual complexes were unsuccessful. The 

preparations of [FeCt-BuDiNC)̂ ]̂  ̂and [Co(t-BuDiNC)g3are exceptions, 

though the use of these synthetic methods with monodentate isonitriles 

remains untested. 
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Space-filling molecular models, which were used extensively in 

the design of all the ligands reported here, provide a reasonable picture 

of inter- and intramolecular interactions in these complexes. In 

certain cases, such as Ni(C0)2(DiNC) or [Mh(CO)g(TriCN)y*\ the models 

appear to exaggerate the amount of strain which would be present in a 

2+ 
molecule. On the other hand, the dinuclear structure of [RhgfSiNC-Z)̂ ] 

was unexpected, even after the construction of molecular models. This 

latter failure suggests that the prediction of the products of such a 

reaction requires a prior consideration of alternate structures and the 

reaction mechanism. 
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